Pregled bibliografske jedinice broj: 902372
Automatic Image Annotation Refinement
Automatic Image Annotation Refinement // 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) / Biljanović, P. (ur.).
Rijeka: Institute of Electrical and Electronics Engineers (IEEE), 2016. str. 1324-1329 doi:10.1109/MIPRO.2016.7522345 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 902372 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic Image Annotation Refinement
(Automatic image annotation refinement)
Autori
Pobar, Miran ; Ivašić-Kos, Marina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
/ Biljanović, P. - Rijeka : Institute of Electrical and Electronics Engineers (IEEE), 2016, 1324-1329
ISBN
978-953233088-5
Skup
39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
Mjesto i datum
Opatija, Hrvatska, 30.05.2016. - 03.06.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Annotation refinement ; Image color analysis ; Feature extraction, Classification algorithms ; Semantics
(Annotation refinement ; Image color analysis ; Feature extraction ; Classification algorithms ; Semantics)
Sažetak
Automatic image annotation methods automatically assign labels to images in order to facilitate tasks such as image retrieval, search, organizing and management. Incorrect labels may negatively influence the search results so image annotation should be as accurate as possible. Labels pertaining to objects or to whole scenes are commonly used for image annotation, and precision is especially important in case when scene labels are inferred from objects, as errors in the object labels may propagate to the scene level. One way to improve the annotation precision is by detecting and discarding the automatically assigned object labels that do not fit the context of other detected objects. This procedure is referred to as annotation refinement. Here, an approach to detection of likely incorrect labels based on the context of other labels and prior knowledge about mutual occurrence of various objects in images is tested.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus