Pregled bibliografske jedinice broj: 900981
Reakcijski mehanizam biološki relevantnih reaktivnih aldehida s različitim aminokiselinama
Reakcijski mehanizam biološki relevantnih reaktivnih aldehida s različitim aminokiselinama // 25. Hrvatski skup kemičara i kemijskih inženjera
Poreč, Hrvatska: Hrvatsko kemijsko društvo, 2017. str. 126-126 (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 900981 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Reakcijski mehanizam biološki relevantnih reaktivnih aldehida s različitim aminokiselinama
(Reaction mechanism of biologically relevant reactive aldehydes with different amino acids)
Autori
Škulj, Sanja ; Vazdar, Mario
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
25. Hrvatski skup kemičara i kemijskih inženjera
Mjesto i datum
Poreč, Hrvatska, 19.04.2017. - 22.04.2017
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
reactive aldehydes ; amino acids ; Michael addition ; Schiff base formation
Sažetak
Reactive aldehydes, such as 4-hydroxy-2E- nonenal (HNE) and 4-oxo-2E-nonenal (ONE) are formed during oxidative stress in cellular membranes. They readily react with membrane proteins and lipids in phospholipid bilayersin turn modifying cellular function. In order to understand the details of chemical reactions relevant in biological membranes, we performed model calculations in inert solvent dichloromethane using SMD/MP2/6- 311++G(d, p)//B3LYP/6-31G(d) level of theory. In particular, we present a detailed reaction mechanism of reaction between HNE and ONE with four different amino acids (lysine, arginine, histidine and cysteine). Two different mechanisms between nucleophilic amino acids and electrophilic reactive aldehydes are identified - Michael addition and Schiff base formation. Michael addition mechanism has three steps: zwitterion formation, proton transfer and cyclization to a hemiacetal derivative resulting in thermodynamically stable products. On the other hand, Schiff base formation occurs in two steps with elimination of water as a rate determining step. Overall, free energy reaction barriers for Schiff base formation are larger as compared to those in Michael addition reaction. Interestingly, both HNE and ONE have similar free energy barriers in both reaction pathways with a single exception in Michael addition of ONE and arginine amino group, where a substantial decrease of free energy reaction barrier is predicted in agreement with experiments.
Izvorni jezik
Engleski
Znanstvena područja
Kemija
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-6090 - Molekularni aspekti oksidativnih procesa u stanicama (MolOxStress) (Vazdar, Mario, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb