Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 899765

Friedrichs systems in a Hilbert space framework : Solvability and multiplicity


Antonić, Nenad; Erceg, Marko; Michelangeli, Alessandro
Friedrichs systems in a Hilbert space framework : Solvability and multiplicity // Journal of differential equations, 263 (2017), 12; 8264-8294 doi:10.1016/j.jde.2017.08.051 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 899765 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Friedrichs systems in a Hilbert space framework : Solvability and multiplicity

Autori
Antonić, Nenad ; Erceg, Marko ; Michelangeli, Alessandro

Izvornik
Journal of differential equations (0022-0396) 263 (2017), 12; 8264-8294

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Symmetric positive first-order system of partial differential equations ; Kreĭn space ; Universal parametrisation of extensions

Sažetak
The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Marko Erceg (autor)

Avatar Url Nenad Antonić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Antonić, Nenad; Erceg, Marko; Michelangeli, Alessandro
Friedrichs systems in a Hilbert space framework : Solvability and multiplicity // Journal of differential equations, 263 (2017), 12; 8264-8294 doi:10.1016/j.jde.2017.08.051 (međunarodna recenzija, članak, znanstveni)
Antonić, N., Erceg, M. & Michelangeli, A. (2017) Friedrichs systems in a Hilbert space framework : Solvability and multiplicity. Journal of differential equations, 263 (12), 8264-8294 doi:10.1016/j.jde.2017.08.051.
@article{article, author = {Antoni\'{c}, Nenad and Erceg, Marko and Michelangeli, Alessandro}, year = {2017}, pages = {8264-8294}, DOI = {10.1016/j.jde.2017.08.051}, keywords = {Symmetric positive first-order system of partial differential equations, Kre\u{\i}n space, Universal parametrisation of extensions}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2017.08.051}, volume = {263}, number = {12}, issn = {0022-0396}, title = {Friedrichs systems in a Hilbert space framework : Solvability and multiplicity}, keyword = {Symmetric positive first-order system of partial differential equations, Kre\u{\i}n space, Universal parametrisation of extensions} }
@article{article, author = {Antoni\'{c}, Nenad and Erceg, Marko and Michelangeli, Alessandro}, year = {2017}, pages = {8264-8294}, DOI = {10.1016/j.jde.2017.08.051}, keywords = {Symmetric positive first-order system of partial differential equations, Kre\u{\i}n space, Universal parametrisation of extensions}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2017.08.051}, volume = {263}, number = {12}, issn = {0022-0396}, title = {Friedrichs systems in a Hilbert space framework : Solvability and multiplicity}, keyword = {Symmetric positive first-order system of partial differential equations, Kre\u{\i}n space, Universal parametrisation of extensions} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font