Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 898950

Decision tree modelling for entrepreneurial intention


Kedmenec, Irena; Oreški, Dijana; Vuković, Ksenija; Postolov, Kiril; Jovanovski, Kiril
Decision tree modelling for entrepreneurial intention // Proceedings of The 11th MAC 2017 / Vopava, Jiri ; Douda, Vladimir ; Kratochvil, Radek ; Konecki, Mario (ur.).
Prag: MAC Prague consulting, 2017. str. 161-170 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 898950 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Decision tree modelling for entrepreneurial intention

Autori
Kedmenec, Irena ; Oreški, Dijana ; Vuković, Ksenija ; Postolov, Kiril ; Jovanovski, Kiril

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of The 11th MAC 2017 / Vopava, Jiri ; Douda, Vladimir ; Kratochvil, Radek ; Konecki, Mario - Prag : MAC Prague consulting, 2017, 161-170

ISBN
978-80-88085-16-4

Skup
The 11th MAC 2017

Mjesto i datum
Prag, Češka Republika, 13.10.2017. - 14.10.2017

Vrsta sudjelovanja
Ostalo

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
entrepreneurial intention, business students, decision tree, data mining

Sažetak
Researching entrepreneurial intention has become extremely popular due to the importance entrepreneurial activity has for the economy. Data mining has been used increasingly in the realms of prediction and classification, replacing traditional statistical approaches. The aim of this paper is to analyse the usefulness of decision trees for predicting entrepreneurial intention by comparing the decision tree method with structural equation modelling (SEM). A predictive model was proposed and empirically tested on a sample of 218 business students from Croatia and Macedonia. The results show that both techniques, SEM and decision tree, offer roughly equal theoretical contributions. However, the rules established using decision trees have deepened our understanding of the data by pointing to specific groups of students in the sample and their respective probabilities of having entrepreneurial intentions.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Sociologija, Psihologija



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Irena Konecki (autor)

Avatar Url Ksenija Vuković (autor)

Avatar Url Dijana Oreški (autor)


Citiraj ovu publikaciju:

Kedmenec, Irena; Oreški, Dijana; Vuković, Ksenija; Postolov, Kiril; Jovanovski, Kiril
Decision tree modelling for entrepreneurial intention // Proceedings of The 11th MAC 2017 / Vopava, Jiri ; Douda, Vladimir ; Kratochvil, Radek ; Konecki, Mario (ur.).
Prag: MAC Prague consulting, 2017. str. 161-170 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kedmenec, I., Oreški, D., Vuković, K., Postolov, K. & Jovanovski, K. (2017) Decision tree modelling for entrepreneurial intention. U: Vopava, J., Douda, V., Kratochvil, R. & Konecki, M. (ur.)Proceedings of The 11th MAC 2017.
@article{article, author = {Kedmenec, Irena and Ore\v{s}ki, Dijana and Vukovi\'{c}, Ksenija and Postolov, Kiril and Jovanovski, Kiril}, year = {2017}, pages = {161-170}, keywords = {entrepreneurial intention, business students, decision tree, data mining}, isbn = {978-80-88085-16-4}, title = {Decision tree modelling for entrepreneurial intention}, keyword = {entrepreneurial intention, business students, decision tree, data mining}, publisher = {MAC Prague consulting}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }
@article{article, author = {Kedmenec, Irena and Ore\v{s}ki, Dijana and Vukovi\'{c}, Ksenija and Postolov, Kiril and Jovanovski, Kiril}, year = {2017}, pages = {161-170}, keywords = {entrepreneurial intention, business students, decision tree, data mining}, isbn = {978-80-88085-16-4}, title = {Decision tree modelling for entrepreneurial intention}, keyword = {entrepreneurial intention, business students, decision tree, data mining}, publisher = {MAC Prague consulting}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }




Contrast
Increase Font
Decrease Font
Dyslexic Font