Pregled bibliografske jedinice broj: 897862
A new stable bidiagonal reduction algorithm
A new stable bidiagonal reduction algorithm // Linear algebra and its applications, 397 (2005), 35-84 doi:10.1016/j.laa.2004.09.019 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 897862 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A new stable bidiagonal reduction algorithm
Autori
Barlow, Jesse ; Bosner, Nela ; Drmač, Zlatko
Izvornik
Linear algebra and its applications (0024-3795) 397
(2005);
35-84
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
singular value decomposition, bidiagonal matrix, error analysis, orthogonality, left orthogonal matrix
Sažetak
A new bidiagonal reduction method is proposed for X ∈ Rm×n. For m ⩾ n, it decomposes X into the product X = UBVT where U ∈ Rm×n has orthonormal columns, V ∈ Rn×n is orthogonal, and B ∈ Rn×n is upper bidiagonal. The matrix V is computed as a product of Householder transformations. The matrices U and B are constructed using a recurrence. If U is desired from the computation, the new procedure requires fewer operations than the Golub–Kahan procedure [SIAM J. Num. Anal. Ser. B 2 (1965) 205] and similar procedures. In floating point arithmetic, the columns of U may be far from orthonormal, but that departure from orthonormality is structured. The application of any backward stable singular value decomposition procedure to B recovers the left singular vectors associated with the leading (largest) singular values of X to near orthogonality. The singular values of B are those of X perturbed by no more than f(m, n)εM∥X∥F where f(m, n) is a modestly growing function and εM is the machine unit. Under certain assumptions, relative error bounds on the singular values are possible.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts