Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 897862

A new stable bidiagonal reduction algorithm


Barlow, Jesse; Bosner, Nela; Drmač, Zlatko
A new stable bidiagonal reduction algorithm // Linear algebra and its applications, 397 (2005), 35-84 doi:10.1016/j.laa.2004.09.019 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 897862 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A new stable bidiagonal reduction algorithm

Autori
Barlow, Jesse ; Bosner, Nela ; Drmač, Zlatko

Izvornik
Linear algebra and its applications (0024-3795) 397 (2005); 35-84

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
singular value decomposition, bidiagonal matrix, error analysis, orthogonality, left orthogonal matrix

Sažetak
A new bidiagonal reduction method is proposed for X ∈ Rm×n. For m ⩾ n, it decomposes X into the product X = UBVT where U ∈ Rm×n has orthonormal columns, V ∈ Rn×n is orthogonal, and B ∈ Rn×n is upper bidiagonal. The matrix V is computed as a product of Householder transformations. The matrices U and B are constructed using a recurrence. If U is desired from the computation, the new procedure requires fewer operations than the Golub–Kahan procedure [SIAM J. Num. Anal. Ser. B 2 (1965) 205] and similar procedures. In floating point arithmetic, the columns of U may be far from orthonormal, but that departure from orthonormality is structured. The application of any backward stable singular value decomposition procedure to B recovers the left singular vectors associated with the leading (largest) singular values of X to near orthogonality. The singular values of B are those of X perturbed by no more than f(m, n)εM∥X∥F where f(m, n) is a modestly growing function and εM is the machine unit. Under certain assumptions, relative error bounds on the singular values are possible.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Zlatko Drmač (autor)

Avatar Url Nela Bosner (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Barlow, Jesse; Bosner, Nela; Drmač, Zlatko
A new stable bidiagonal reduction algorithm // Linear algebra and its applications, 397 (2005), 35-84 doi:10.1016/j.laa.2004.09.019 (međunarodna recenzija, članak, znanstveni)
Barlow, J., Bosner, N. & Drmač, Z. (2005) A new stable bidiagonal reduction algorithm. Linear algebra and its applications, 397, 35-84 doi:10.1016/j.laa.2004.09.019.
@article{article, author = {Barlow, Jesse and Bosner, Nela and Drma\v{c}, Zlatko}, year = {2005}, pages = {35-84}, DOI = {10.1016/j.laa.2004.09.019}, keywords = {singular value decomposition, bidiagonal matrix, error analysis, orthogonality, left orthogonal matrix}, journal = {Linear algebra and its applications}, doi = {10.1016/j.laa.2004.09.019}, volume = {397}, issn = {0024-3795}, title = {A new stable bidiagonal reduction algorithm}, keyword = {singular value decomposition, bidiagonal matrix, error analysis, orthogonality, left orthogonal matrix} }
@article{article, author = {Barlow, Jesse and Bosner, Nela and Drma\v{c}, Zlatko}, year = {2005}, pages = {35-84}, DOI = {10.1016/j.laa.2004.09.019}, keywords = {singular value decomposition, bidiagonal matrix, error analysis, orthogonality, left orthogonal matrix}, journal = {Linear algebra and its applications}, doi = {10.1016/j.laa.2004.09.019}, volume = {397}, issn = {0024-3795}, title = {A new stable bidiagonal reduction algorithm}, keyword = {singular value decomposition, bidiagonal matrix, error analysis, orthogonality, left orthogonal matrix} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font