Pregled bibliografske jedinice broj: 897139
An Efficient Deterministic-Stochastic Model for the Homogeneous Human Brain Model Dosimetry: ANOVA Approaches for Sensitivity Analysis of Model Parameters
An Efficient Deterministic-Stochastic Model for the Homogeneous Human Brain Model Dosimetry: ANOVA Approaches for Sensitivity Analysis of Model Parameters // Booklet of abstracts SPAS 2017
Västerås, 2017. str. 34-35 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 897139 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An Efficient Deterministic-Stochastic Model for the Homogeneous Human Brain Model Dosimetry: ANOVA Approaches for Sensitivity Analysis of Model Parameters
Autori
Šušnjara, Anna ; Cvetković, Mario ; Poljak, Dragan ; Lallechere, Sebastien ; Drissi, Khalil El Khamlichi
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Booklet of abstracts SPAS 2017
/ - Västerås, 2017, 34-35
Skup
International Conference "Stochastic Processes and Algebraic Structures" - From Theory Towards Applications SPAS2017
Mjesto i datum
Västerås, Švedska; Stockholm, Švedska, 04.10.2017. - 06.10.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Analysis of variance ; High frequency dosimetry ; Human brain model ; Sensitivity analysis ; Stochastic collocation
Sažetak
In high frequency dosimetry of human brain it is necessary to develop computational models to estimate the temperature distribution inside the brain, since its direct measurement is not possible. In order to describe an interaction between the high frequency electromagnetic field and the human brain, models may become very complex with numerous input variables whose values are rarely exactly known. It is important to have a good understanding of the relationship between the input and output parameters. In this paper ANalysis Of Variance (ANOVA) approach coupled with the stochastic collocation (SC) expansion method is applied on homogeneous human brain model in order to obtain a sensitivity analysis (SA) of input parameters. The results enable the ranking of the parameters from the most to the least significant ones. Moreover, the impact of the mutual interaction of input variables is obtained.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split