Pregled bibliografske jedinice broj: 896823
The Napoleon-Barlotti theorem in pentagonal quasigroups
The Napoleon-Barlotti theorem in pentagonal quasigroups // LOOPS'15 The International Mathematical Conference on Quasigroups and Loops
Ohrid, Sjeverna Makedonija, 2015. (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 896823 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Napoleon-Barlotti theorem in pentagonal quasigroups
Autori
Vidak, Stipe
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
LOOPS'15 The International Mathematical Conference on Quasigroups and Loops
Mjesto i datum
Ohrid, Sjeverna Makedonija, 28.06.2015. - 04.07.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
pentagonal quasigroup, regular pentagon, center of regular pentagon
Sažetak
Pentagonal quasigroups are IM-quasigroups in which the additional identity (ab · a) b · a=b holds. GS-quasigroups are IM-quasigroups in which the identity a(ab · c) · c=b holds. The relation between these two subclasses of IM- quasigroups is studied. The geometric concepts of GS-trapezoid and affine regular pentagon, previously defined and studied in GS- quasigroups, are now defined in a general pentagonal quasigroup. Along with the concepts of the regular pentagon and the centre of the regular pentagon, previously defined in pentagonal quasigroups, this enables formulations and proofs of some theorems of the Euclidean plane in a general pentagonal quasigroup. Among these theorems is the famous Napoleon-Barlotti theorem in the case n=5.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Stipe Vidak
(autor)