Pregled bibliografske jedinice broj: 896554
Generalized n-circular projections on JB*-triples
Generalized n-circular projections on JB*-triples // Contemporary Mathematics / Botelho, Fernanda (ur.).
Singapur: American Mathematical Society (AMS), 2017. str. 157-165 doi:10.1090/conm/687/13729
CROSBI ID: 896554 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Generalized n-circular projections on JB*-triples
Autori
Ilišević, Dijana
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Contemporary Mathematics
Urednik/ci
Botelho, Fernanda
Izdavač
American Mathematical Society (AMS)
Grad
Singapur
Godina
2017
Raspon stranica
157-165
ISBN
978-1-4704-2772-6
ISSN
0271-4132
Ključne riječi
Projection, isometry, hermitian operator, JB*-triple
Sažetak
A nonzero projection $P_0$ on a complex Banach space $X$ is said to be a generalized $n$-circular projection ($n \geq 2$) if there exist distinct modulus one complex numbers $\lambda_1, \dots, \lambda_(n-1)$, not equal to 1, and nonzero projections $P_1, \dots, P_(n-1)$ on $X$ such that $P_0 \oplus P_1 \oplus \cdots \oplus P_(n-1)$ is the identity on $X$, and $P_0 + \lambda_1 P_1 + \cdots + \lambda_(n-1)P_(n-1)$ is an isometry. If $X$ is a JB*-triple and $n=2$ then it is known that $\lambda_1=-1$, or $P_0$ and $P_1$ are hermitian. The aim of this paper is to generalize this result for arbitrary $n \geq 2$, and to apply it to the case $n=3$, that is, to the so-called generalized tricircular projections.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Dijana Ilišević
(autor)