Pregled bibliografske jedinice broj: 896325
Free and open source chemistry software in research of quantitative structure-toxicity relationship of pesticides
Free and open source chemistry software in research of quantitative structure-toxicity relationship of pesticides // MATEC Web of Conferences / N. Mastorakis, V. Mladenov, A. Bulucea (ur.).
Heraklion: EDP Sciences, 2017. str. 1-5 doi:10.1051/matecconf/201712504001 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 896325 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Free and open source chemistry software in research of quantitative structure-toxicity relationship of pesticides
(Free and open source chemistry software in
research of quantitative structure-toxicity
relationship of pesticides)
Autori
Rastija, Vesna ; Agić, Dejan ; Brlas, Kristian ; Masand, Vijay
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MATEC Web of Conferences
/ N. Mastorakis, V. Mladenov, A. Bulucea - Heraklion : EDP Sciences, 2017, 1-5
Skup
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
Mjesto i datum
Heraklion, Grčka, 14.07.2017. - 17.07.2017
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
pesticides ; QSTR ; PyDescriptor
Sažetak
Pesticides are toxic chemicals aimed for the destroying pest on crops. Numerous data evidence about toxicity of pesticides on aquatic organisms. Since pesticides with similar properties tend to have similar biological activities, toxicity may be predicted from structure. Their structure feature and properties are encoded my means of molecular descriptors. Molecular descriptors can capture quite simple two-dimensional (2D) chemical structures to highly complex three- dimensional (3D) chemical structures. Quantitative structure- toxicity relationship (QSTR) method uses linear regression analyses for correlation toxicity of chemical with their structural feature using molecular descriptors. Molecular descriptors were calculated using open source software PaDEL and in-house built PyMOL plugin (PyDescriptor). PyDescriptor is a new script implemented with the commonly used visualization software PyMOL for calculation of a large and diverse set of easily interpretable molecular descriptors encoding pharmacophoric patterns and atomic fragments. PyDescriptor has several advantages like free and open source, can work on all major platforms (Windows, Linux, MacOS). QSTR method allows prediction of toxicity of pesticides without experimental assay. In the present work, QSTR analysis for toxicity of a dataset of mixtures of 5 classes of pesticides comprising has been performed.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Računarstvo, Poljoprivreda (agronomija)
POVEZANOST RADA
Ustanove:
Fakultet agrobiotehničkih znanosti Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus