Pregled bibliografske jedinice broj: 893773
TFD Thresholding In Estimating The Number of EEG Components And The Dominant IF Using The Short-Term Rényi Entropy
TFD Thresholding In Estimating The Number of EEG Components And The Dominant IF Using The Short-Term Rényi Entropy // 10th International Symposium on Image and Signal Processing and Analysis - ISPA 2017 / Kovačič, Stanislav ; Lončarić, Sven ; Kristan, Matej ; Štruc, Vitomir ; Vučić, Mladen (ur.).
Ljubljana: University of Zagreb, Croatia, 2017. str. 80-85 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 893773 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
TFD Thresholding In Estimating The Number of EEG Components And The Dominant IF Using The Short-Term Rényi Entropy
Autori
Lerga, Jonatan ; Saulig, Nicoletta ; Lerga, Rebeka ; Štajduhar, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
10th International Symposium on Image and Signal Processing and Analysis - ISPA 2017
/ Kovačič, Stanislav ; Lončarić, Sven ; Kristan, Matej ; Štruc, Vitomir ; Vučić, Mladen - Ljubljana : University of Zagreb, Croatia, 2017, 80-85
ISBN
978-1-5090-4011-7
Skup
10th International Symposium on Image and Signal Processing and Analysis - ISPA 2017
Mjesto i datum
Ljubljana, Slovenija, 18.09.2017. - 20.09.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Short-Term Rényi Entropy ; Instantaneous Frequency (IF) Estimation ; Time-Frequency Signal Analysis
Sažetak
Time-frequency (TF) based EEG signal analysis using the local or short-term R´enyi entropy often requires lowenergy cross-terms and noise suppression prior to the estimation of the local number of components and the dominant component instantaneous frequency (IF). This can be easily accomplished by thresholding in the TF domain with the preset TF threshold value, often chosen empirically. The paper investigates the sensitivity of the method based on the local R´enyi entropy to the chosen threshold value. The study was performed on real-life left and right hand movements EEG signals. As shown in the paper, the number of the EEG components extracted using the short- term R´enyi entropy is highly sensitive to the chosen TF threshold value, unlike the dominant IF which was shown to be highly robust to TF thresholding. Hence, characterization of the EEG signals using the short-term R´enyi entropy should include both detecting the number of EEG components and the dominant component IF estimation.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka