Pregled bibliografske jedinice broj: 893585
Role of skeletal muscle in ear development
Role of skeletal muscle in ear development // Histology and histopathology, 32 (2017), 10; 987-1000 doi:10.14670/HH-11-886 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 893585 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Role of skeletal muscle in ear development
Autori
Rot, Irena ; Baguma-Nibasheka, Mark ; Costain, Willard J. ; Hong, Paul ; Tafra, Robert, Mardešić-Brakus, Snježana ; Mrduljaš-Đujić, Nataša ; Saraga-Babić, Mirna ; Kablar, Boris
Izvornik
Histology and histopathology (0213-3911) 32
(2017), 10;
987-1000
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
Mouse embryo ; Inner ear ; Crista ampullaris ; Type I hair cell ; Microarray
Sažetak
Work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/- :Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants’ cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne medicinske znanosti
POVEZANOST RADA
Ustanove:
KBC Split,
Medicinski fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE