Pregled bibliografske jedinice broj: 893421
Time series forecasting of parameters in hydraulic engineering using artificial neural networks
Time series forecasting of parameters in hydraulic engineering using artificial neural networks // Book of abstracts of the 15th International Symposium on Water Management and Hydraulic Engineering / Bekić, Damir ; Carević, Dalibor ; Vouk, Dražen (ur.).
Zagreb: Građevinski fakultet Sveučilišta u Zagrebu, 2017. str. 24-24 (ostalo, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 893421 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Time series forecasting of parameters in hydraulic engineering using artificial neural networks
Autori
Halkijević, Ivan ; Gilja, Gordon
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of abstracts of the 15th International Symposium on Water Management and Hydraulic Engineering
/ Bekić, Damir ; Carević, Dalibor ; Vouk, Dražen - Zagreb : Građevinski fakultet Sveučilišta u Zagrebu, 2017, 24-24
ISBN
978-953-8168-16-1
Skup
15th International Symposium on Water Management and Hydraulic Engineering
Mjesto i datum
Primošten, Hrvatska, 06.09.2017. - 08.09.2017
Vrsta sudjelovanja
Ostalo
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
artificial neural networks, forecasting, time series, network learning, hydraulic engineering
Sažetak
Time series of a parameter represent a development of its value in time and from a continuous function. Problems related to time series data, such as pattern recognition, data classification, time series and dynamic systems analysis, as well as time series forecasting problems are frequently solved using Artificial neural networks (ANN). They usually provide an alternative forecasting approach to traditional regression models. The forecasting is usually based on parameter’s past values through the process of ANN learning. This process includes the analysis of the past (historical) data with the aim to discover some hidden, not so obvious and non-linear dependencies that can be used for predicting the future values of the parameter under consideration. The learning relies only on past and long enough data collection without any need for further information. Depending on the problem and the available data ANN can provide forecasting functionality with varying degrees of success and setting up the network can also be time consuming. In general, the disadvantage is that the error of prediction cannot be estimated. There are many different ways for using ANN in forecasting and they are usually case specific. This paper presents an overview of some ANN applications in forecasting, with emphasis on design parameters in hydraulic engineering.
Izvorni jezik
Engleski
Znanstvena područja
Geologija, Građevinarstvo
POVEZANOST RADA
Projekti:
082-0000000-3246 - Međudjelovanje hidromelioracijskih sustava i okolišnih čimbenika (Kuspilić, Neven, MZOS ) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb