Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 893421

Time series forecasting of parameters in hydraulic engineering using artificial neural networks


Halkijević, Ivan; Gilja, Gordon
Time series forecasting of parameters in hydraulic engineering using artificial neural networks // Book of abstracts of the 15th International Symposium on Water Management and Hydraulic Engineering / Bekić, Damir ; Carević, Dalibor ; Vouk, Dražen (ur.).
Zagreb: Građevinski fakultet Sveučilišta u Zagrebu, 2017. str. 24-24 (ostalo, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 893421 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Time series forecasting of parameters in hydraulic engineering using artificial neural networks

Autori
Halkijević, Ivan ; Gilja, Gordon

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of abstracts of the 15th International Symposium on Water Management and Hydraulic Engineering / Bekić, Damir ; Carević, Dalibor ; Vouk, Dražen - Zagreb : Građevinski fakultet Sveučilišta u Zagrebu, 2017, 24-24

ISBN
978-953-8168-16-1

Skup
15th International Symposium on Water Management and Hydraulic Engineering

Mjesto i datum
Primošten, Hrvatska, 06.09.2017. - 08.09.2017

Vrsta sudjelovanja
Ostalo

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
artificial neural networks, forecasting, time series, network learning, hydraulic engineering

Sažetak
Time series of a parameter represent a development of its value in time and from a continuous function. Problems related to time series data, such as pattern recognition, data classification, time series and dynamic systems analysis, as well as time series forecasting problems are frequently solved using Artificial neural networks (ANN). They usually provide an alternative forecasting approach to traditional regression models. The forecasting is usually based on parameter’s past values through the process of ANN learning. This process includes the analysis of the past (historical) data with the aim to discover some hidden, not so obvious and non-linear dependencies that can be used for predicting the future values of the parameter under consideration. The learning relies only on past and long enough data collection without any need for further information. Depending on the problem and the available data ANN can provide forecasting functionality with varying degrees of success and setting up the network can also be time consuming. In general, the disadvantage is that the error of prediction cannot be estimated. There are many different ways for using ANN in forecasting and they are usually case specific. This paper presents an overview of some ANN applications in forecasting, with emphasis on design parameters in hydraulic engineering.

Izvorni jezik
Engleski

Znanstvena područja
Geologija, Građevinarstvo



POVEZANOST RADA


Projekti:
082-0000000-3246 - Međudjelovanje hidromelioracijskih sustava i okolišnih čimbenika (Kuspilić, Neven, MZOS ) ( CroRIS)

Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Gordon Gilja (autor)

Avatar Url Ivan Halkijević (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Halkijević, Ivan; Gilja, Gordon
Time series forecasting of parameters in hydraulic engineering using artificial neural networks // Book of abstracts of the 15th International Symposium on Water Management and Hydraulic Engineering / Bekić, Damir ; Carević, Dalibor ; Vouk, Dražen (ur.).
Zagreb: Građevinski fakultet Sveučilišta u Zagrebu, 2017. str. 24-24 (ostalo, međunarodna recenzija, sažetak, znanstveni)
Halkijević, I. & Gilja, G. (2017) Time series forecasting of parameters in hydraulic engineering using artificial neural networks. U: Bekić, D., Carević, D. & Vouk, D. (ur.)Book of abstracts of the 15th International Symposium on Water Management and Hydraulic Engineering.
@article{article, author = {Halkijevi\'{c}, Ivan and Gilja, Gordon}, year = {2017}, pages = {24-24}, keywords = {artificial neural networks, forecasting, time series, network learning, hydraulic engineering}, isbn = {978-953-8168-16-1}, title = {Time series forecasting of parameters in hydraulic engineering using artificial neural networks}, keyword = {artificial neural networks, forecasting, time series, network learning, hydraulic engineering}, publisher = {Gra\djevinski fakultet Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Primo\v{s}ten, Hrvatska} }
@article{article, author = {Halkijevi\'{c}, Ivan and Gilja, Gordon}, year = {2017}, pages = {24-24}, keywords = {artificial neural networks, forecasting, time series, network learning, hydraulic engineering}, isbn = {978-953-8168-16-1}, title = {Time series forecasting of parameters in hydraulic engineering using artificial neural networks}, keyword = {artificial neural networks, forecasting, time series, network learning, hydraulic engineering}, publisher = {Gra\djevinski fakultet Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Primo\v{s}ten, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font