Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 892512

Multi-Class U-Net for Segmentation of Non-biometric Identifiers


Hrkać, Tomislav; Brkić, Karla; Kalafatić, Zoran
Multi-Class U-Net for Segmentation of Non-biometric Identifiers // IMVIP 2017 Irish Machine Vision and Image Processing Conference Proceedings / McDonald, John ; Markham, Charles ; Winslanley, Adam (ur.).
Maynooth: Irish Pattern Recognition & Classification Society, 2017. str. 131-138 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 892512 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multi-Class U-Net for Segmentation of Non-biometric Identifiers

Autori
Hrkać, Tomislav ; Brkić, Karla ; Kalafatić, Zoran

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
IMVIP 2017 Irish Machine Vision and Image Processing Conference Proceedings / McDonald, John ; Markham, Charles ; Winslanley, Adam - Maynooth : Irish Pattern Recognition & Classification Society, 2017, 131-138

ISBN
978-0-9934207-2-6

Skup
IMVIP 2017 Irish Machine Vision and Image Processing

Mjesto i datum
Maynooth, Irska, 30.08.2017. - 01.09.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
De-identification, Semantic segmentation, Deep learning

Sažetak
Ubiquity of image and video recording devices, as well as the increasing ease of sharing multimedia contents containing people without their permission induces serious privacy risks. Despite considerable efforts in research on de- identification of such contents, potentially identity-revealing information present in soft and non-biometric identifiers is often neglected. We propose an approach for segmentation of non- biometric identifiers intended for use in a de- identification pipeline that takes into account potentially identity-revealing characteristics such as dressing style, hairstyle, personal items, etc. The proposed approach is based on an adaptation of U-Net fully convolutional deep neural network architecture.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Tomislav Hrkać (autor)

Avatar Url Karla Brkić (autor)

Avatar Url Zoran Kalafatić (autor)


Citiraj ovu publikaciju:

Hrkać, Tomislav; Brkić, Karla; Kalafatić, Zoran
Multi-Class U-Net for Segmentation of Non-biometric Identifiers // IMVIP 2017 Irish Machine Vision and Image Processing Conference Proceedings / McDonald, John ; Markham, Charles ; Winslanley, Adam (ur.).
Maynooth: Irish Pattern Recognition & Classification Society, 2017. str. 131-138 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Hrkać, T., Brkić, K. & Kalafatić, Z. (2017) Multi-Class U-Net for Segmentation of Non-biometric Identifiers. U: McDonald, J., Markham, C. & Winslanley, A. (ur.)IMVIP 2017 Irish Machine Vision and Image Processing Conference Proceedings.
@article{article, author = {Hrka\'{c}, Tomislav and Brki\'{c}, Karla and Kalafati\'{c}, Zoran}, year = {2017}, pages = {131-138}, keywords = {De-identification, Semantic segmentation, Deep learning}, isbn = {978-0-9934207-2-6}, title = {Multi-Class U-Net for Segmentation of Non-biometric Identifiers}, keyword = {De-identification, Semantic segmentation, Deep learning}, publisher = {Irish Pattern Recognition and Classification Society}, publisherplace = {Maynooth, Irska} }
@article{article, author = {Hrka\'{c}, Tomislav and Brki\'{c}, Karla and Kalafati\'{c}, Zoran}, year = {2017}, pages = {131-138}, keywords = {De-identification, Semantic segmentation, Deep learning}, isbn = {978-0-9934207-2-6}, title = {Multi-Class U-Net for Segmentation of Non-biometric Identifiers}, keyword = {De-identification, Semantic segmentation, Deep learning}, publisher = {Irish Pattern Recognition and Classification Society}, publisherplace = {Maynooth, Irska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font