Pregled bibliografske jedinice broj: 892212
Nonexistence of D(4)-quintuples
Nonexistence of D(4)-quintuples // 19TH ÖMG CONGRESS AND ANNUAL DMV MEETING
Salzburg, Austrija, 2017. str. 93-93 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 892212 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Nonexistence of D(4)-quintuples
Autori
Filipin, Alan ; Bliznac Trebješanin, Marija
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
19TH ÖMG CONGRESS AND ANNUAL DMV MEETING
/ - , 2017, 93-93
Skup
19TH ÖMG CONGRESS AND ANNUAL DMV MEETING
Mjesto i datum
Salzburg, Austrija, 11.09.2017. - 15.09.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine m-tuples
Sažetak
Let n be a nonzero integer. A set of m distinct positive integers such that the product of any two of its elements increased by n is a perfect square is called D(n)-m-tuple. One of the question of interest is how large those sets can be. The most studied case is n = 1, and very recently He, Togbé and Ziegler announced the proof of the folklore conjecture, that there does not exist a D(1)-quintuple. In this talk we will consider the case n = 4. There is also a conjecture that there does not exist a D(4)-quintuple. The cases n = 1 and n = 4 are closely connected and usually the same methods work. However, D(4) case is sometimes technically more challenging. We will give the proof of nonexistence of D(4)-quintuples, focusing on parts that are different from D(1) case.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb