Pregled bibliografske jedinice broj: 89167
A reinforcement learning approach to obstacle avoidance of mobile robots
A reinforcement learning approach to obstacle avoidance of mobile robots // Proceedings of the 7th IEEE International Workshop on Advanced Motion Control / Jezernik, Karel ; Ohnishi, Kouhei (ur.).
Maribor: Tiskarna tehniških fakultet Maribor ; IEEE, 2002. str. 462-466 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 89167 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A reinforcement learning approach to obstacle avoidance of mobile robots
Autori
Maček, Kristijan ; Petrović, Ivan ; Perić, Nedjeljko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 7th IEEE International Workshop on Advanced Motion Control
/ Jezernik, Karel ; Ohnishi, Kouhei - Maribor : Tiskarna tehniških fakultet Maribor ; IEEE, 2002, 462-466
Skup
The 7th IEEE International Workshop on Advanced Motion Control,
Mjesto i datum
Maribor, Slovenija, 03.07.2002. - 05.07.2002
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
reinforcement learning; mobile robots; obstacle avoidance
Sažetak
One of the basic issues in navigation of autonomous mobile robots is the obstacle avoidance task that is commonly achieved using reactive control paradigm where a local mapping from perceived states to actions is acquired. A control strategy with learning capabilities in an unknown environment can be obtained using reinforcement learning where the learning agent is given only sparse reward information. This credit assignment problem includes both temporal and structural aspects. While the temporal credit assignment problem is solved using core elements of reinforcement learning agent, solution of the structural credit assignment problem requires an appropriate internal state space representation of the environment. In this paper a discrete coding of the input space using a neural network structure is presented as opposed to the commonly used continuous internal representation. This enables a faster and more efficient convergence of the reinforcement learning process.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb