Pregled bibliografske jedinice broj: 888873
The seven Dimensional Perfect Delaunay Polytopes and Delaunay Simplices
The seven Dimensional Perfect Delaunay Polytopes and Delaunay Simplices // Canadian journal of mathematics, 69 (2017), 1143-1168 doi:10.4153/CJM-2016-013-7 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 888873 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The seven Dimensional Perfect Delaunay Polytopes and Delaunay Simplices
Autori
Dutour Sikirić, Mathieu
Izvornik
Canadian journal of mathematics (0008-414X) 69
(2017);
1143-1168
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Delaunay polytope, enumeration, polyhedral methods
Sažetak
For a lattice L of R^n, a sphere S(c, r) of center c and radius r is called empty if for any v∈L we have ∥v−c∥≥r. Then the set S(c, r)∩L is the vertex set of a Delaunay polytope P=conv(S(c, r)∩L). A Delaunay polytope is called perfect if any affine transformation ϕ such that ϕ(P) is a Delaunay polytope is necessarily an isometry of the space composed with an homothety. Perfect Delaunay polytopes are remarkable structure that exist only if n=1 or n≥6 and they have shown up recently in covering maxima studies. Here we give a general algorithm for their enumeration that relies on the Erdahl cone. We apply this algorithm in dimension 7 which allow us to find that there are only two perfect Delaunay polytopes: 321 which is a Delaunay polytope in the root lattice E7 and the Erdahl Rybnikov polytope. We then use this classification in order to get the list of all types Delaunay simplices in dimension 7 and found 11 types.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet