Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 888807

Potential theory of subordinate killed Brownian motion


Kim, Panki; Song, Renming; Vondraček, Zoran
Potential theory of subordinate killed Brownian motion // Transactions of the American Mathematical Society, 371 (2019), 6; 3917-3969 doi:10.1090/tran/7358 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 888807 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Potential theory of subordinate killed Brownian motion

Autori
Kim, Panki ; Song, Renming ; Vondraček, Zoran

Izvornik
Transactions of the American Mathematical Society (0002-9947) 371 (2019), 6; 3917-3969

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
subordinate killed Brownian motion, subordinate Brownian motion, harmonic functions, Harnack inequality, boundary Harnack principle

Sažetak
Let $W^D$ be a killed Brownian motion in a domain $D\subset \R^d$ and $S$ an independent subordinator with Laplace exponent $\phi$. The process $Y^D$ defined by $Y^D_t=W^D_{; ; ; ; ; ; S_t}; ; ; ; ; ; $ is called a subordinate killed Brownian motion. It is a Hunt process with infinitesimal generator $-\phi(-\Delta|_D)$, where $\Delta|_D$ is the Dirichlet Laplacian. In this paper we study the potential theory of $Y^D$ under a weak scaling condition on the derivative of $\phi$. We first show that non-negative harmonic functions of $Y^D$ satisfy the scale invariant Harnack inequality. Subsequently we prove two types of scale invariant boundary Harnack principles with explicit decay rates for non-negative harmonic functions of $Y^D$. The first boundary Harnack principle deals with a $C^{; ; ; ; ; ; 1, 1}; ; ; ; ; ; $ domain $D$ and non-negative functions which are harmonic near the boundary of $D$, while the second one is for a more general domain $D$ and non-negative functions which are harmonic near the boundary of an interior open subset of $D$. The obtained decay rates are not the same, reflecting different boundary and interior behaviors of $Y^D$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Zoran Vondraček (autor)

Poveznice na cjeloviti tekst rada:

doi www.ams.org doi.org

Citiraj ovu publikaciju:

Kim, Panki; Song, Renming; Vondraček, Zoran
Potential theory of subordinate killed Brownian motion // Transactions of the American Mathematical Society, 371 (2019), 6; 3917-3969 doi:10.1090/tran/7358 (međunarodna recenzija, članak, znanstveni)
Kim, P., Song, R. & Vondraček, Z. (2019) Potential theory of subordinate killed Brownian motion. Transactions of the American Mathematical Society, 371 (6), 3917-3969 doi:10.1090/tran/7358.
@article{article, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2019}, pages = {3917-3969}, DOI = {10.1090/tran/7358}, keywords = {subordinate killed Brownian motion, subordinate Brownian motion, harmonic functions, Harnack inequality, boundary Harnack principle}, journal = {Transactions of the American Mathematical Society}, doi = {10.1090/tran/7358}, volume = {371}, number = {6}, issn = {0002-9947}, title = {Potential theory of subordinate killed Brownian motion}, keyword = {subordinate killed Brownian motion, subordinate Brownian motion, harmonic functions, Harnack inequality, boundary Harnack principle} }
@article{article, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2019}, pages = {3917-3969}, DOI = {10.1090/tran/7358}, keywords = {subordinate killed Brownian motion, subordinate Brownian motion, harmonic functions, Harnack inequality, boundary Harnack principle}, journal = {Transactions of the American Mathematical Society}, doi = {10.1090/tran/7358}, volume = {371}, number = {6}, issn = {0002-9947}, title = {Potential theory of subordinate killed Brownian motion}, keyword = {subordinate killed Brownian motion, subordinate Brownian motion, harmonic functions, Harnack inequality, boundary Harnack principle} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font