Pregled bibliografske jedinice broj: 888304
Jacobi method for symmetric 4x4 matrices converges for every cyclic pivot strategy
Jacobi method for symmetric 4x4 matrices converges for every cyclic pivot strategy // Numerical algorithms, 78 (2018), 3; 701-720 doi:10.1007/s11075-017-0396-8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 888304 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Jacobi method for symmetric 4x4 matrices converges for every cyclic pivot strategy
Autori
Begović Kovač, Erna ; Hari, Vjeran
Izvornik
Numerical algorithms (1017-1398) 78
(2018), 3;
701-720
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Eigenvalues ; Jacobi method ; global convergence
Sažetak
The paper studies the global convergence of the Jacobi method for symmetric matrices of size $4$. We prove global convergence for all $720$ cyclic pivot strategies. Precisely, we show that inequality $S(A^[t+3])\leq\gamma S(A^[t])$, $t\geq1$, holds with the constant $\gamma<1$ that depends neither on the matrix $A$ nor on the pivot strategy. Here $A^[t]$ stands for the matrix obtained from $A$ after $t$ full cycles of the Jacobi method and $S(A)$ is the off-diagonal norm of $A$. We show why three consecutive cycles have to be considered. The result has a direct application on the $J$-Jacobi method.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3670 - Matične faktorizacije i blok dijagonalizacijski algoritmi (MFBDA) (Hari, Vjeran, HRZZ - 2014-09) ( CroRIS)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus