Pregled bibliografske jedinice broj: 887307
Approximation of Global Competitiveness Index (GCI) for Croatia using Polynomial Regression Model
Approximation of Global Competitiveness Index (GCI) for Croatia using Polynomial Regression Model // 7th International Conference Economics and Management based on New Technologies EMoNT-2017 / Dašić, Predrag (ur.).
Vrnjačka Banja: SaTCIP Publisher Ltd., 2017. str. 22-31 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 887307 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Approximation of Global Competitiveness Index (GCI) for Croatia using Polynomial Regression Model
(Aproximation of Global Competitiveness Index (GCI) for Croatia using Polynomial Regression Model)
Autori
Stanivuk, Tatjana ; Dašić, Predrag ; Aščić, Amna
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
7th International Conference Economics and Management based on New Technologies EMoNT-2017
/ Dašić, Predrag - Vrnjačka Banja : SaTCIP Publisher Ltd., 2017, 22-31
ISBN
978-86-6075-061-9
Skup
7th International Conference "Economics and Management- Based on New Technologies" EMoNT-2017
Mjesto i datum
Vrnjačka Banja, Srbija, 15.06.2017. - 18.06.2017
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Global competitiveness index (GCI), Regression analysis, Polynomial Regression Model (PRM)
Sažetak
Global Competiveness Index (GCI) is the economic and technological indicator, which allows to determine the level of economic and technological development of a country on an annual basis. It determines the amount of the influence of a number of key factors contributing to create the conditions for the competition. It is published annually in Global Competiveness Report (GCR) by World Economic Forum (WEF). In the paper is given trend analysis and approximation of Croatia’s Global competitiveness index (GCI) for period 2005-2016. Data is adequately approximated with 5th-degree Polynomial Regression Model (PRM5) with R=0.95797, R2=0.91771 and Adj R2=0.84913.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Tehnologija prometa i transport, Ekonomija