Pregled bibliografske jedinice broj: 886181
Fast clustering in linear 1D subspaces: segmentation of microscopic image of unstained specimens
Fast clustering in linear 1D subspaces: segmentation of microscopic image of unstained specimens // Proceedings of the SPIE / Gurcan, Metin N ; Tomaszewski, John E. (ur.).
Orlando (FL), Sjedinjene Američke Države: SPIE, 2017. str. 1014003-1 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 886181 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fast clustering in linear 1D subspaces: segmentation of microscopic image of unstained specimens
Autori
Kopriva, Ivica ; Brbić, Maria ; Tolić, Dijana ; Antulov-Fantulin, Nino ; Chen, Xinjian
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the SPIE
/ Gurcan, Metin N ; Tomaszewski, John E. - : SPIE, 2017, 1014003-1
Skup
Medical Imaging Symposium 2017 - Digital Pathology Conference
Mjesto i datum
Orlando (FL), Sjedinjene Američke Države, 11.02.2017. - 16.02.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
subspace clustering ; one-dimensional subspace ; reproducible kernel Hilbert space ; image segmentation
Sažetak
Algorithms for subspace clustering (SC) are effective in terms of the accuracy but exhibit high computational complexity. We propose algorithm for SC of (highly) similar data points drawn from union of linear one- dimensional subspaces that are possibly dependent in the input data space. The algorithm finds a dictionary that represents data in reproducible kernel Hilbert space (RKHS). Afterwards, data are projected into RKHS by using empirical kernel map (EKM). Due to dimensionality expansion effect of the EKM one-dimensional subspaces become independent in RKHS. Segmentation into subspaces is realized by applying the max operator on projected data which yields the computational complexity of the algorithm that is linear in number of data points. We prove that for noise free data proposed approach yields exact clustering into subspaces. We also prove that EKM-based projection yields less correlated data points. Due to nonlinear projection, the proposed method can adopt to linearly nonseparable data points. We demonstrate accuracy and computational efficiency of the proposed algorithm on synthetic dataset as well as on segmentation of the image of unstained specimen in histopathology. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Maria Brbić
(autor)
Ivica Kopriva
(autor)
Dijana Tolić
(autor)
Nino Antulov-Fantulin
(autor)