Pregled bibliografske jedinice broj: 885373
Melanoma and Skin Lesion Detection Using OpenCV and Machine Learning Algorithms
Melanoma and Skin Lesion Detection Using OpenCV and Machine Learning Algorithms, 2017., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 885373 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Melanoma and Skin Lesion Detection Using OpenCV and Machine Learning Algorithms
Autori
Banfić, Nenad
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
11.07
Godina
2017
Stranica
49
Mentor
Milašinović, Boris
Ključne riječi
melanoma ; skin lesion ; benign ; malignant ; colour ; structure ; asymmetry ; border ; texture ; OpenCV ; Android ; server ; machine learning ; model ; images ; image processing
Sažetak
The task of this master thesis was to collect images of both benign and malicious skin lesions, study the OpenCV application framework and find a way to extract features such as colours, asymmetry, borders, structures by using different segmentations and feature extraction algorithms. Afterwards, it was important to develop and test different supervised machine learning models in order to classify lesions into potentially dangerous or safe and develop an Android application that would enable a user to take a photo of a lesion and receive back the analysis result. Different variants of image processing were taken into the consideration, i.e. on a mobile device and on the server.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Boris Milašinović
(mentor)