Pregled bibliografske jedinice broj: 884532
A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapor interface
A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapor interface // Nature Communications, 8 (2017), 700-1 doi:10.1038/s41467-017-00823-x (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 884532 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapor interface
Autori
Artiglia, Luca ; Edebeli, Jacinta ; Orlando, Fabrizio ; Chen, Shuzhen ; Lee, Ming-Tao ; Corral- Arroyo, Pablo ; Gilgen, Anina ; Bartels-Rausch, Thorsten ; Kleibert, Armin ; Vazdar, Mario ; Carignano, Marcelo ; Francisco, Joseph ; Shepson, Paul ; Gladich, Ivan ; Ammann, Markus
Izvornik
Nature Communications (2041-1723) 8
(2017);
700-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
bromide oxidation ; vapor-liquid interface, X-ray spectroscopy, quantum chemical calculations ; ab initio molecular dynamics, core electron binding calculations
Sažetak
Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone occurs through an acid-catalyzed mechanism involving a [Br•OOO-] complex as intermediate. Here, we confirm that the heterogeneous oxidation rates exceed those expected in the bulk phase at low temperatures and low, atmospherically relevant ozone concentrations. Saturating behavior towards high ozone concentrations indicates limiting surface coverage of this intermediate. Our liquid jet X-ray photoelectron spectroscopy measurements for the first time provide direct experimental evidence for the ozonide and confirm its propensity for the solution-vapor interface. The theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Taken together, our results provide strong evidence for how aqueous phase reactions differ in energetics, stability and structure of intermediates, and reaction rates when occurring at the aqueous phase – vapor interface as compared to their characteristics in the bulk aqueous phase. This is of substantial interest in basic and applied chemistry and engineering.
Izvorni jezik
Engleski
Znanstvena područja
Kemija
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
- Nature Index