Pregled bibliografske jedinice broj: 884508
Development of Inferential Models for Fractionation Reformate Unit
Development of Inferential Models for Fractionation Reformate Unit // Summaries Volume 21st International Conference on Process Control / M., Fikar ; M., Kvasnica (ur.).
Bratislava: SCHK Slovenská chemická knižnica, 2017. str. 143-148 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 884508 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Development of Inferential Models for Fractionation Reformate Unit
Autori
Ujević Andrijić, Željka ; Mohler, Ivan ; Bolf, Nenad ; Dorić, Hrvoje
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Summaries Volume 21st International Conference on Process Control
/ M., Fikar ; M., Kvasnica - Bratislava : SCHK Slovenská chemická knižnica, 2017, 143-148
ISBN
978-1-5386-4010-4
Skup
21st International Conference on Process Control
Mjesto i datum
Štrbské Pleso, Slovačka, 06.06.2017. - 09.06.2017
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Soft sensors ; System identification ; Genetic algorithm ; Simulated annealing ; Fractionation reformate unit
Sažetak
Industrial facilities show an increasing need for continuous measurement and monitoring a large number of process variables due to strict product quality requirements, environmental laws and for advanced process control application. On-line analyzers typically suffer from long measurement delays not desirable in continuous control. Suitable alternative are soft sensors and inferential control. In this paper the development of soft sensor models for the estimation of light reformate benzene content is carried out. Linear dynamical autoregressive model with external inputs (ARX), autoregressive moving average model with exogenous inputs (ARMAX) and Box-Jenkins (BJ) models are developed. For the regression vector optimization usually performed by trial and error, Genetic Algorithm (GA) and Simulated Annealing (SA) methods have been applied. The results indicate that the GA and SA as global optimization methods are suitable for the regressor order estimation of linear dynamical models with multiple inputs. Based on developed soft sensors, it is possible to apply advanced process control schemes.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb