Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 884499

Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory


Lesičar, Tomislav; Tonković, Zdenko; Sorić, Jurica
Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory // Proceedings of the Special Workshop Multiscale Modeling of Heterogeneous Structures / MUMO 2016 Workshop Organizing Committee (ur.).
Zagreb, 2016. (predavanje, nije recenziran, sažetak, ostalo)


CROSBI ID: 884499 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory

Autori
Lesičar, Tomislav ; Tonković, Zdenko ; Sorić, Jurica

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo

Izvornik
Proceedings of the Special Workshop Multiscale Modeling of Heterogeneous Structures / MUMO 2016 Workshop Organizing Committee - Zagreb, 2016

Skup
Special workshop Multiscale Modeling of Heterogeneous Structures - MUMO 2016

Mjesto i datum
Dubrovnik, Hrvatska, 21.09.2016. - 23.09.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
heterogeneous materials, C1 finite element, C1 continuity microlevel, second-order homogenization, Aifantis theory

Sažetak
In this research a new multiscale algorithm employing second-order computational homogenization is proposed, where a higher-order continuum theory is used at both scales, which is named C1-C1 homogenization. The both scales are represented by the Aifantis strain gradient elasticity theory. Owing to a higher-order continuum introduced on the RVE, each macrolevel displacement gradient and stress tensor can be derived as a true volume average of their micro conjugate. The macro-to-micro scale transition methodology is derived. The nonlocal behavior in C1-C1 approach is dictated by the RVE size, but also by Aifantis intrinsic microstructural parameter. Thus, the relation between the nonlocal influence of the RVE size and the microstructural parameter has been identified. The results of the new C1-C1 multiscale scheme are compared to the classical C1-C0 algorithm.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
HRZZ-11-2013-2516
120-1201910-1812 - Numeričko modeliranje procesa deformiranja bioloških tkiva (Sorić, Jurica, MZOS ) ( CroRIS)
120-1201910-1906 - Modeliranje oštećenja i sigurnost konstrukcija (Tonković, Zdenko, MZOS ) ( CroRIS)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Tomislav Lesičar (autor)

Avatar Url Jurica Sorić (autor)

Avatar Url Zdenko Tonković (autor)


Citiraj ovu publikaciju:

Lesičar, Tomislav; Tonković, Zdenko; Sorić, Jurica
Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory // Proceedings of the Special Workshop Multiscale Modeling of Heterogeneous Structures / MUMO 2016 Workshop Organizing Committee (ur.).
Zagreb, 2016. (predavanje, nije recenziran, sažetak, ostalo)
Lesičar, T., Tonković, Z. & Sorić, J. (2016) Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory. U: MUMO 2016 Workshop Organizing Committee (ur.)Proceedings of the Special Workshop Multiscale Modeling of Heterogeneous Structures.
@article{article, author = {Lesi\v{c}ar, Tomislav and Tonkovi\'{c}, Zdenko and Sori\'{c}, Jurica}, year = {2016}, keywords = {heterogeneous materials, C1 finite element, C1 continuity microlevel, second-order homogenization, Aifantis theory}, title = {Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory}, keyword = {heterogeneous materials, C1 finite element, C1 continuity microlevel, second-order homogenization, Aifantis theory}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Lesi\v{c}ar, Tomislav and Tonkovi\'{c}, Zdenko and Sori\'{c}, Jurica}, year = {2016}, keywords = {heterogeneous materials, C1 finite element, C1 continuity microlevel, second-order homogenization, Aifantis theory}, title = {Multiscale Modeling of Heterogeneous Materials Using Gradient Elasticity Theory}, keyword = {heterogeneous materials, C1 finite element, C1 continuity microlevel, second-order homogenization, Aifantis theory}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font