Pregled bibliografske jedinice broj: 884161
Classification of 1D-Signal Types Using Semi- Supervised Deep Learning
Classification of 1D-Signal Types Using Semi- Supervised Deep Learning, 2017., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb
CROSBI ID: 884161 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Classification of 1D-Signal Types Using Semi- Supervised Deep Learning
Autori
Šebrek, Tomislav
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet Elektrotehnike i Računarstva
Mjesto
Zagreb
Datum
10.07
Godina
2017
Stranica
60
Mentor
Šikić, Mile
Ključne riječi
deep learning, autoencoder, generative adversarial network, semi-supervised learning, coverage graph, chimeric read, repeat read
Sažetak
In this thesis, we proposed methods for detecting the type of the coverage graph based on semi-supervised deep learning models: autoencoders and generative adversarial networks. We evaluated the performance of each model based on the dataset that contained reads from multiple reference genomes. We have manually labeled some of the data and compared the results of all models with respect to the number of labeled examples that were used during the training process. We have embedded this detection in the assembly process and achieved good results. The source code is available at https://github.com/tomislavsebrek/diplomski.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mile Šikić
(mentor)