Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 884161

Classification of 1D-Signal Types Using Semi- Supervised Deep Learning


Šebrek, Tomislav
Classification of 1D-Signal Types Using Semi- Supervised Deep Learning, 2017., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb


CROSBI ID: 884161 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification of 1D-Signal Types Using Semi- Supervised Deep Learning

Autori
Šebrek, Tomislav

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski

Fakultet
Fakultet Elektrotehnike i Računarstva

Mjesto
Zagreb

Datum
10.07

Godina
2017

Stranica
60

Mentor
Šikić, Mile

Ključne riječi
deep learning, autoencoder, generative adversarial network, semi-supervised learning, coverage graph, chimeric read, repeat read

Sažetak
In this thesis, we proposed methods for detecting the type of the coverage graph based on semi-supervised deep learning models: autoencoders and generative adversarial networks. We evaluated the performance of each model based on the dataset that contained reads from multiple reference genomes. We have manually labeled some of the data and compared the results of all models with respect to the number of labeled examples that were used during the training process. We have embedded this detection in the assembly process and achieved good results. The source code is available at https://github.com/tomislavsebrek/diplomski.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mile Šikić (mentor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Šebrek, Tomislav
Classification of 1D-Signal Types Using Semi- Supervised Deep Learning, 2017., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb
Šebrek, T. (2017) 'Classification of 1D-Signal Types Using Semi- Supervised Deep Learning', diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb.
@phdthesis{phdthesis, author = {\v{S}ebrek, Tomislav}, year = {2017}, pages = {60}, keywords = {deep learning, autoencoder, generative adversarial network, semi-supervised learning, coverage graph, chimeric read, repeat read}, title = {Classification of 1D-Signal Types Using Semi- Supervised Deep Learning}, keyword = {deep learning, autoencoder, generative adversarial network, semi-supervised learning, coverage graph, chimeric read, repeat read}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {\v{S}ebrek, Tomislav}, year = {2017}, pages = {60}, keywords = {deep learning, autoencoder, generative adversarial network, semi-supervised learning, coverage graph, chimeric read, repeat read}, title = {Classification of 1D-Signal Types Using Semi- Supervised Deep Learning}, keyword = {deep learning, autoencoder, generative adversarial network, semi-supervised learning, coverage graph, chimeric read, repeat read}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font