Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 884158

Deep Learning Model for Base Calling of MinION Nanopore Reads


Ratković, Marko
Deep Learning Model for Base Calling of MinION Nanopore Reads, 2017., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb


CROSBI ID: 884158 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep Learning Model for Base Calling of MinION Nanopore Reads

Autori
Ratković, Marko

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski

Fakultet
Fakultet Elektrotehnike i Računarstva

Mjesto
Zagreb

Datum
10.07

Godina
2017

Stranica
48

Mentor
Šikić, Mile

Ključne riječi
base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss

Sažetak
MinION by Oxford Nanopore Technologie is affordable and portable sequencing device suitable for various applications. The device produces very long reads, however, it suffers from high sequencing error rate. The goal of this thesis is to show that the reported accuracy of the sequencing data is not only limited by sequencing technology, but also by the current software tools used for base calling and can be further improved by using different deep learning concepts. Approach for base calling of raw data using convolutional neural networks is proposed as an alternative to recurrent neural networks used by other basecallers offering improvements both in speed and accuracy. A detailed comparison of the developed tool with the existing tools for base calling R9 data is given.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mile Šikić (mentor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Ratković, Marko
Deep Learning Model for Base Calling of MinION Nanopore Reads, 2017., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb
Ratković, M. (2017) 'Deep Learning Model for Base Calling of MinION Nanopore Reads', diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb.
@phdthesis{phdthesis, author = {Ratkovi\'{c}, Marko}, year = {2017}, pages = {48}, keywords = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, title = {Deep Learning Model for Base Calling of MinION Nanopore Reads}, keyword = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Ratkovi\'{c}, Marko}, year = {2017}, pages = {48}, keywords = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, title = {Deep Learning Model for Base Calling of MinION Nanopore Reads}, keyword = {base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq, convolutional neural network, residual network, CTC loss}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font