Pregled bibliografske jedinice broj: 884157
Identification of 1D-Signal Types Using Unsupervised Deep Learning
Identification of 1D-Signal Types Using Unsupervised Deep Learning, 2017., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb
CROSBI ID: 884157 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Identification of 1D-Signal Types Using Unsupervised Deep Learning
Autori
Tomljanović, Jan
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet Elektrotehnike i Računarstva
Mjesto
Zagreb
Datum
10.07
Godina
2017
Stranica
65
Mentor
Šikić, Mile
Ključne riječi
bioinformatics, unsupervised learning, deep learning, autoencoders
Sažetak
During de novo genome assembly process, certain types of sequenced reads can cause problems during genome reconstruction. Goal of this thesis is to learn more about possible types of reads and classification of those reads using unsupervised learning. Coverage graphs of reads are generated using read overlaps and those coverage graphs are further analysed. Autoencoder is used to compress the signal, i.e. the coverage graph, and clustering algorithm is then applied to the compressed data. Variational and denoising autoencoders along with k-means and spectral clustering algorithms are used. Visualisation of found clusters is performed along with semantic analysis. Signal classification quality using unsupervised learning is estimated.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mile Šikić
(mentor)