Pregled bibliografske jedinice broj: 883446
Traffic speed prediction for highway operations based on a symbolic regression algorithm
Traffic speed prediction for highway operations based on a symbolic regression algorithm // Promet - Traffic & Transportation, 29 (2017), 4; 431-441 doi:10.7307/ptt.v29i4.2279 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 883446 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Traffic speed prediction for highway operations based on a symbolic regression algorithm
Autori
Li, Linchao ; Fratrović, Tomislav ; Jian, Zhang ; Bin, Ran
Izvornik
Promet - Traffic & Transportation (0353-5320) 29
(2017), 4;
431-441
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
highway congestion ; traffic state ; sensor data ; speed prediction ; incident ; symbolic regression ; genetic programming
Sažetak
Due to the increase of congestion on highway, providing real-time information about the traffic state becomes a crucial issue. Hence, it is the aim of this research to build an accurate traffic speed prediction model using symbolic regression to generate significant information for travelers. It is built based on genetic programming using Pareto front technique. With real world data from microwave sensor, the performance of the proposed model is compared with two other widely used models. The results indicate that the symbolic regression is the most accurate among these models. Especially, after an incident occurs, the performance of the proposed model is still the best which means it is robust and suitable to predict traffic state of highway under different conditions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Tehnologija prometa i transport
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Transportation Research Information Services - TRIS