Pregled bibliografske jedinice broj: 883222
Emotion classification using linear predictive features on wavelet-decomposed EEG data
Emotion classification using linear predictive features on wavelet-decomposed EEG data // Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication
Lisabon, Portugal, 2017. 17418085, 5 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 883222 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Emotion classification using linear predictive features on wavelet-decomposed EEG data
Autori
Kraljević, Luka ; Russo, Mladen ; Sikora, Marjan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication
/ - , 2017
Skup
The 26th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2017
Mjesto i datum
Lisabon, Portugal, 28.08.2017. - 01.09.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Motivations and Emotions in Robotics ; Creating Human-Robot Relationships ; Applications of Social Robots
Sažetak
Emotions play a significant role in human communication and decision making. In order to bypass current limitations of human-robot interaction, more natural, trustworthy and nonverbal way of communication is needed. This requires robots to be able to explain and perceive person’s emotions. Our work is based on the concept that each emotional state can be placed on a two-dimensional plane with arousal and valence as the axes. We propose a new feature set based on using the linear predictive coefficients on wavelet- decomposed EEG signals. Emotion classification is then performed using support vector machine with Gaussian kernel. Proposed approach is evaluated on EEG signals from publicly available DEAP dataset and results show that our method is effective and outperforms some state of the art methods
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-3875 - Pametna okruženja za poboljšanje kvalitete života (ELISE) (Russo, Mladen, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split