Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 882241

A data driven compressive sensing approach for time-frequency signal enhancement


Volarić, Ivan; Sučić, Viktor; Stanković, Srdjan
A data driven compressive sensing approach for time-frequency signal enhancement // Signal processing, 141 (2017), 229-239 doi:10.1016/j.sigpro.2017.06.013 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 882241 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A data driven compressive sensing approach for time-frequency signal enhancement

Autori
Volarić, Ivan ; Sučić, Viktor ; Stanković, Srdjan

Izvornik
Signal processing (0165-1684) 141 (2017); 229-239

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Time-frequency representation ; Ambiguity function ; Signal sparsity ; Compressive sensing ; Basis pursuit ; Linear unconstrained optimization

Sažetak
Signals with the time-varying frequency content are generally well represented in the joint time-frequency domain ; however, the most commonly used methods for time-frequency distributions (TFDs) calculation generate unwanted artifacts, making the TFDs interpretation more difficult. This downside can be circumvented by compressive sensing (CS) of the signal ambiguity function (AF), followed by the TFD reconstruction based on the sparsity constraint. The most critical step in this approach is a proper CS-AF area selection, with the CS-AF size and shape being generally chosen experimentally, hence decreasing the overall reliability of the method. In this paper, we propose a method for an automatic data driven CS-AF area selection, which removes the need for the user input. The AF samples picked by the here-proposed algorithm ensure the optimal amount of data for the sparse TFD reconstruction, resulting in higher TFD concentration and faster sparse reconstruction algorithm convergence, as shown on examples of both synthetical and real-life signals.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Volarić (autor)

Avatar Url Viktor Sučić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Volarić, Ivan; Sučić, Viktor; Stanković, Srdjan
A data driven compressive sensing approach for time-frequency signal enhancement // Signal processing, 141 (2017), 229-239 doi:10.1016/j.sigpro.2017.06.013 (međunarodna recenzija, članak, znanstveni)
Volarić, I., Sučić, V. & Stanković, S. (2017) A data driven compressive sensing approach for time-frequency signal enhancement. Signal processing, 141, 229-239 doi:10.1016/j.sigpro.2017.06.013.
@article{article, author = {Volari\'{c}, Ivan and Su\v{c}i\'{c}, Viktor and Stankovi\'{c}, Srdjan}, year = {2017}, pages = {229-239}, DOI = {10.1016/j.sigpro.2017.06.013}, keywords = {Time-frequency representation, Ambiguity function, Signal sparsity, Compressive sensing, Basis pursuit, Linear unconstrained optimization}, journal = {Signal processing}, doi = {10.1016/j.sigpro.2017.06.013}, volume = {141}, issn = {0165-1684}, title = {A data driven compressive sensing approach for time-frequency signal enhancement}, keyword = {Time-frequency representation, Ambiguity function, Signal sparsity, Compressive sensing, Basis pursuit, Linear unconstrained optimization} }
@article{article, author = {Volari\'{c}, Ivan and Su\v{c}i\'{c}, Viktor and Stankovi\'{c}, Srdjan}, year = {2017}, pages = {229-239}, DOI = {10.1016/j.sigpro.2017.06.013}, keywords = {Time-frequency representation, Ambiguity function, Signal sparsity, Compressive sensing, Basis pursuit, Linear unconstrained optimization}, journal = {Signal processing}, doi = {10.1016/j.sigpro.2017.06.013}, volume = {141}, issn = {0165-1684}, title = {A data driven compressive sensing approach for time-frequency signal enhancement}, keyword = {Time-frequency representation, Ambiguity function, Signal sparsity, Compressive sensing, Basis pursuit, Linear unconstrained optimization} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font