Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 880627

A comparison of machine learning methods for cutting parameters prediction in high speed turning process


Jurkovic, Zoran; Cukor, Goran; Brezocnik, Miran; Brajkovic, Tomislav
A comparison of machine learning methods for cutting parameters prediction in high speed turning process // Journal of Intelligent Manufacturing, 29 (2018), 8; 1683-1693 doi:10.1007/s10845-016-1206-1 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 880627 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A comparison of machine learning methods for cutting parameters prediction in high speed turning process

Autori
Jurkovic, Zoran ; Cukor, Goran ; Brezocnik, Miran ; Brajkovic, Tomislav

Izvornik
Journal of Intelligent Manufacturing (0956-5515) 29 (2018), 8; 1683-1693

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Turning ; Roughness ; Cutting force ; Tool life ; ANN ; SVR

Sažetak
Support vector machines are arguably one of the most successful methods for data classification, but when using them in regression problems, literature suggests that their performance is no longer state-of-the-art. This paper compares performances of three machine learning methods for the prediction of independent output cutting parameters in a high speed turning process. Observed parameters were the surface roughness (Ra), cutting force (Fc), and tool lifetime (T). For the modelling, support vector regression (SVR), polynomial (quadratic) regression, and artificial neural network (ANN) were used. In this research, polynomial regression has outperformed SVR and ANN in the case of Fc and Ra prediction, while ANN had the best performance in the case of T, but also the worst performance in the case of Fc and Ra. The study has also shown that in SVR, the polynomial kernel has outperformed linear kernel and RBF kernel. In addition, there was no significant difference in performance between SVR and polynomial regression for prediction of all three output machining parameters.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Zoran Jurković (autor)

Avatar Url Goran Cukor (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Jurkovic, Zoran; Cukor, Goran; Brezocnik, Miran; Brajkovic, Tomislav
A comparison of machine learning methods for cutting parameters prediction in high speed turning process // Journal of Intelligent Manufacturing, 29 (2018), 8; 1683-1693 doi:10.1007/s10845-016-1206-1 (međunarodna recenzija, članak, znanstveni)
Jurkovic, Z., Cukor, G., Brezocnik, M. & Brajkovic, T. (2018) A comparison of machine learning methods for cutting parameters prediction in high speed turning process. Journal of Intelligent Manufacturing, 29 (8), 1683-1693 doi:10.1007/s10845-016-1206-1.
@article{article, author = {Jurkovic, Zoran and Cukor, Goran and Brezocnik, Miran and Brajkovic, Tomislav}, year = {2018}, pages = {1683-1693}, DOI = {10.1007/s10845-016-1206-1}, keywords = {Turning, Roughness, Cutting force, Tool life, ANN, SVR}, journal = {Journal of Intelligent Manufacturing}, doi = {10.1007/s10845-016-1206-1}, volume = {29}, number = {8}, issn = {0956-5515}, title = {A comparison of machine learning methods for cutting parameters prediction in high speed turning process}, keyword = {Turning, Roughness, Cutting force, Tool life, ANN, SVR} }
@article{article, author = {Jurkovic, Zoran and Cukor, Goran and Brezocnik, Miran and Brajkovic, Tomislav}, year = {2018}, pages = {1683-1693}, DOI = {10.1007/s10845-016-1206-1}, keywords = {Turning, Roughness, Cutting force, Tool life, ANN, SVR}, journal = {Journal of Intelligent Manufacturing}, doi = {10.1007/s10845-016-1206-1}, volume = {29}, number = {8}, issn = {0956-5515}, title = {A comparison of machine learning methods for cutting parameters prediction in high speed turning process}, keyword = {Turning, Roughness, Cutting force, Tool life, ANN, SVR} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font