Pregled bibliografske jedinice broj: 880243
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields // Publicationes mathematicae, 92 (2018), 3-4; 293-315 doi:10.5486/PMD.2018.7848 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 880243 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields
Autori
Franušić, Zrinka ; Jadrijević, Borka
Izvornik
Publicationes mathematicae (0033-3883) 92
(2018), 3-4;
293-315
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
index form equations, relative power integral basis, system of relative Pellian equations
Sažetak
Let M=Q(√(-D)) be an imaginary quadratic field with ring of integers Z_{; ; ; ; M}; ; ; ; and let ξ be a root of the polynomial f(x)=x⁴-2cx³+2x²+2cx+1, where c∈Z_{; ; ; ; M}; ; ; ; ∖{; ; ; ; 0, ±2}; ; ; ; and c≠±1 if D=1 or 3. We consider an infinite family of octic fields K_{; ; ; ; c}; ; ; ; =M(ξ) with the ring of integers Z_{; ; ; ; K_{; ; ; ; c}; ; ; ; }; ; ; ; . Our goal is to determine all generators of relative power integral basis of O=Z_{; ; ; ; M}; ; ; ; [ξ] over Z_{; ; ; ; M}; ; ; ; . We show that our problem reduces to solving the system of relative Pellian equations cV²-(c+2)U²=-2μ, cZ²-(c-2)U²=2μ, where μ is an unit in Z_{; ; ; ; M}; ; ; ; . We solve the system completely and find that all non-equivalent generators of power integral bases of O over Z_{; ; ; ; M}; ; ; ; are given by α=ξ, 2ξ-2cξ²+ξ³ for |c|≥159108 and |c|≤1000, c∉S_{; ; ; ; c}; ; ; ; (where S_{; ; ; ; c}; ; ; ; is a set of exceptional cases, |S_{; ; ; ; c}; ; ; ; |=28). Also, we find that, in all above cases, O admits no absolute power integral basis if -D≡2, 3(mod4).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts