Pregled bibliografske jedinice broj: 878965
Rubio de Francia's Inequality and an Extension of the Marcinkiewicz Multiplier Theorem
Rubio de Francia's Inequality and an Extension of the Marcinkiewicz Multiplier Theorem // Second Summer School on Harmonic Analysis and Partial Differential Equations
Bilbao, Španjolska, 2016. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 878965 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Rubio de Francia's Inequality and an Extension of the Marcinkiewicz Multiplier Theorem
Autori
Palle, Ljudevit
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Second Summer School on Harmonic Analysis and Partial Differential Equations
Mjesto i datum
Bilbao, Španjolska, 04.07.2016. - 08.07.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Littlewood-Paley inequality ; multipliers ; square function ;
Sažetak
We will present Rubio de Francia's inequality, a type of Littlewood-Paley inequality without the requirement for the intervals in the decomposition to be dyadic. After exposing the main ideas in its proof, the inequality will be used to prove an extension of the classical Marcinkiewicz multiplier theorem in which the multiplier $L^p$ operator norm is essentially bounded by the $q$-variation of the multiplier.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ljudevit Palle
(autor)