Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 878958

Data anonymization patent landscape


Pejić Bach, Mirjana; Pivar, Jasmina; Dumičić, Ksenija
Data anonymization patent landscape // Croatian operational research review, 8 (2017), 1; 265-281 doi:10.17535/crorr.2017.0017 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 878958 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Data anonymization patent landscape

Autori
Pejić Bach, Mirjana ; Pivar, Jasmina ; Dumičić, Ksenija

Izvornik
Croatian operational research review (1848-0225) 8 (2017), 1; 265-281

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
data anonymization ; patent landscape ; PatSeer ; data mining ; association rules ; text mining

Sažetak
The omnipresent, unstoppable increase in digital data has led to a greater understanding of the importance of data privacy. Different approaches are used to implement data privacy. The goal of this paper is to develop a data anonymization patent landscape, by determining the following: (i) the trend in data anonymization patenting, (ii) the type of technical content protected in data anonymization, (iii) the organizations and countries most active in patenting data anonymization know-how ; and (iv) the topics emerging most often in patent titles. Patents from the PatSeer database relating to data anonymization from 2001 to 2015 were analyzed. We used the longitudinal approach in combination with text mining techniques to develop a data anonymization patent landscape. The results indicated the following. The number of single patent families is growing with a high increase after 2010, thus indicating a positive trend in the area of patenting data anonymization solutions. The majority of patenting activities relate to the G Physics section. Organizations from the USA and Japan assigned the majority of patents related to data anonymization. The results of text mining indicate that the most often used word in titles of data anonymization patents are “anonym*, “method”, “data” and “system”. Several additional words that indicated the most frequent topics related to data anonymization were: “equipment”, “software”, “protection”, “identification”, or “encryption”, and specific topics such as “community”, “medical”, or “service”.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi Hrčak

Citiraj ovu publikaciju:

Pejić Bach, Mirjana; Pivar, Jasmina; Dumičić, Ksenija
Data anonymization patent landscape // Croatian operational research review, 8 (2017), 1; 265-281 doi:10.17535/crorr.2017.0017 (međunarodna recenzija, članak, znanstveni)
Pejić Bach, M., Pivar, J. & Dumičić, K. (2017) Data anonymization patent landscape. Croatian operational research review, 8 (1), 265-281 doi:10.17535/crorr.2017.0017.
@article{article, author = {Peji\'{c} Bach, Mirjana and Pivar, Jasmina and Dumi\v{c}i\'{c}, Ksenija}, year = {2017}, pages = {265-281}, DOI = {10.17535/crorr.2017.0017}, keywords = {data anonymization, patent landscape, PatSeer, data mining, association rules, text mining}, journal = {Croatian operational research review}, doi = {10.17535/crorr.2017.0017}, volume = {8}, number = {1}, issn = {1848-0225}, title = {Data anonymization patent landscape}, keyword = {data anonymization, patent landscape, PatSeer, data mining, association rules, text mining} }
@article{article, author = {Peji\'{c} Bach, Mirjana and Pivar, Jasmina and Dumi\v{c}i\'{c}, Ksenija}, year = {2017}, pages = {265-281}, DOI = {10.17535/crorr.2017.0017}, keywords = {data anonymization, patent landscape, PatSeer, data mining, association rules, text mining}, journal = {Croatian operational research review}, doi = {10.17535/crorr.2017.0017}, volume = {8}, number = {1}, issn = {1848-0225}, title = {Data anonymization patent landscape}, keyword = {data anonymization, patent landscape, PatSeer, data mining, association rules, text mining} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus
  • EconLit


Uključenost u ostale bibliografske baze podataka::


  • Rural Sociology Abstracts (CAB Abstracts)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font