Pregled bibliografske jedinice broj: 877707
Application of a pattern recognition method to estimate wind loads on ships and marine objects = Anwendung eines Erkennungsmodells zur Abschätzung von Windlasten auf Schiffe und Marineobjekte
Application of a pattern recognition method to estimate wind loads on ships and marine objects = Anwendung eines Erkennungsmodells zur Abschätzung von Windlasten auf Schiffe und Marineobjekte // Materialwissenschaft und Werkstofftechnik, 48 (2017), 5; 387-399 doi:10.1002/mawe.201700009 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 877707 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of a pattern recognition method to
estimate wind loads on ships and marine objects
= Anwendung eines Erkennungsmodells zur
Abschätzung von Windlasten auf Schiffe und
Marineobjekte
(Application of a pattern recognition method to
estimate wind loads on ships and marine objects)
Autori
Valčić, Marko ; Prpić-Oršić, Jasna ; Vučinić, Dean
Izvornik
Materialwissenschaft und Werkstofftechnik (0933-5137) 48
(2017), 5;
387-399
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Wind loads, Pattern recognition, Elliptic Fourier descriptors, Neural network
Sažetak
This paper presents an extension of the application capabilities of elliptic Fourier descriptors from the usual pattern recognition and classification problems to problems of very complex nonlinear multivariable approximations of multi-input and multi-output functions. Wind loads on ships and marine objects are a complicated phenomenon because of the complex configuration of the above-water part of the structure. The proposed approach of the wind load estimation method presented in this paper consists of four basic parts: acquisition and pre-processing of vessel images ; image editing ; data preparation for neural network training ; validating and testing of the created neural network. The method is based on elliptic Fourier features of a closed contour which are used for the frontal and lateral closed contour representation of ships. Therefore, this approach takes into account all aspects of the variability of the above-water frontal and lateral ship profile. For the purpose of multivariate nonlinear regression, the generalized regression radial basis neural network is trained by elliptic Fourier features of closed contours and wind load data derived from wind tunnel tests. The trained neural network is used for the estimation of non- dimensional wind load coefficients. The results for a group of car carriers are presented and compared with the experimental data.
Izvorni jezik
Engleski
Znanstvena područja
Brodogradnja, Tehnologija prometa i transport, Temeljne tehničke znanosti
Napomena
S.I.: Advanced Computational Engineering and
Experimenting (ACE-X 2016) (odabrana
sudjelovanja).
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-8722 - Ekološki pristup projektiranju broda i optimalnom planiranju rute (GASDORP) (Prpić-Oršić, Jasna, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Pomorski fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus