Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 876934

Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU)


Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Novak Stankov, Mirjana; Rogošić, Marko
Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU) // Environmental science and pollution research, 24 (2017), 19; 16172-16185 doi:10.1007/s11356-017-9216-x (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 876934 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU)

Autori
Bolanča, Tomislav ; Strahovnik, Tomislav ; Ukić, Šime ; Novak Stankov, Mirjana ; Rogošić, Marko

Izvornik
Environmental science and pollution research (0944-1344) 24 (2017), 19; 16172-16185

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
GHG emissions ; artificial neural network ; energy consumption ; energy sector

Sažetak
This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates ; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Poveznice na cjeloviti tekst rada:

doi link.springer.com dx.doi.org

Citiraj ovu publikaciju:

Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Novak Stankov, Mirjana; Rogošić, Marko
Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU) // Environmental science and pollution research, 24 (2017), 19; 16172-16185 doi:10.1007/s11356-017-9216-x (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Strahovnik, T., Ukić, Š., Novak Stankov, M. & Rogošić, M. (2017) Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU). Environmental science and pollution research, 24 (19), 16172-16185 doi:10.1007/s11356-017-9216-x.
@article{article, author = {Bolan\v{c}a, Tomislav and Strahovnik, Tomislav and Uki\'{c}, \v{S}ime and Novak Stankov, Mirjana and Rogo\v{s}i\'{c}, Marko}, year = {2017}, pages = {16172-16185}, DOI = {10.1007/s11356-017-9216-x}, keywords = {GHG emissions, artificial neural network, energy consumption, energy sector}, journal = {Environmental science and pollution research}, doi = {10.1007/s11356-017-9216-x}, volume = {24}, number = {19}, issn = {0944-1344}, title = {Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU)}, keyword = {GHG emissions, artificial neural network, energy consumption, energy sector} }
@article{article, author = {Bolan\v{c}a, Tomislav and Strahovnik, Tomislav and Uki\'{c}, \v{S}ime and Novak Stankov, Mirjana and Rogo\v{s}i\'{c}, Marko}, year = {2017}, pages = {16172-16185}, DOI = {10.1007/s11356-017-9216-x}, keywords = {GHG emissions, artificial neural network, energy consumption, energy sector}, journal = {Environmental science and pollution research}, doi = {10.1007/s11356-017-9216-x}, volume = {24}, number = {19}, issn = {0944-1344}, title = {Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study—Croatia (EU)}, keyword = {GHG emissions, artificial neural network, energy consumption, energy sector} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font