Pregled bibliografske jedinice broj: 873134
Exploratory clustering for patient subpopulation discovery
Exploratory clustering for patient subpopulation discovery // Informatics for Health: Connected Citizen-Led Wellness and Population Health / Randell, Rebecca ; Cornet, Ronald ; McCowan, Colin ; Peek, Niels ; Scott, Philip J. ; (ur.).
Manchester, Ujedinjeno Kraljevstvo: IOS Press, 2017. str. 101-105 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 873134 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Exploratory clustering for patient subpopulation discovery
Autori
Gamberger, Dragan ; Ženko, Bernard ; Lavrač, Nada
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Informatics for Health: Connected Citizen-Led Wellness and Population Health
/ Randell, Rebecca ; Cornet, Ronald ; McCowan, Colin ; Peek, Niels ; Scott, Philip J. ; - : IOS Press, 2017, 101-105
ISBN
978-1-61499-752-8
Skup
Informatics for Health 2017
Mjesto i datum
Manchester, Ujedinjeno Kraljevstvo, 24.04.2017. - 26.04.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Data clustering ; Biomarkers ; Alzheimer's disease
Sažetak
Exploratory Clustering is a novel general purpose clustering tool which is especially appropriate for medical domains in which we need to identify subpopulations that are similar in two different data layers. The tool implements the multi-layer clustering algorithm in a framework that enables iterative experiments by the user in his search for relevant patient subpopulations. A unique property of the tool is integration of clustering and feature selection algorithms. Differences in values of most relevant attributes are used to demonstrate decisive properties of constructed clusters. Usefulness of the tool is illustrated on a task of discovering groups of patients with similar cognitive impairment.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA