Pregled bibliografske jedinice broj: 870247
Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields
Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields // JP Journal of Algebra, Number Theory and Applications, 39 (2017), 3; 307-326 doi:10.17654/NT039030307 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 870247 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Determining elements of minimal index in an
infinite family of totally real bicyclic
biquadratic number fields
Autori
Gaál, István ; Jadrijević, Borka
Izvornik
JP Journal of Algebra, Number Theory and Applications (0972-5555) 39
(2017), 3;
307-326
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
bicyclic biquadratic fields ; power integral basis ; minimal index
Sažetak
Let c ≠ 2 be a positive integer such that c and c + 4 are square-free. We consider the infinite parametric family of bicyclic biquadratic fields K = Q(sqrt {; ; ; 2c}; ; ; , sqrt {; ; ; 2(c + 4)}; ; ; ). We determine the integral basis of the field. We show that K admits no power integral basis, determine the minimal index and all elements of minimal index. We use the solutions of a parametric family of quartic Thue equations and extensive numerical calculations by Maple and Magma are also involved.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Borka Jadrijević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus