Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 870247

Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields


Gaál, István; Jadrijević, Borka
Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields // JP Journal of Algebra, Number Theory and Applications, 39 (2017), 3; 307-326 doi:10.17654/NT039030307 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 870247 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields

Autori
Gaál, István ; Jadrijević, Borka

Izvornik
JP Journal of Algebra, Number Theory and Applications (0972-5555) 39 (2017), 3; 307-326

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
bicyclic biquadratic fields ; power integral basis ; minimal index

Sažetak
Let c ≠ 2 be a positive integer such that c and c + 4 are square-free. We consider the infinite parametric family of bicyclic biquadratic fields K = Q(sqrt {; ; ; 2c}; ; ; , sqrt {; ; ; 2(c + 4)}; ; ; ). We determine the integral basis of the field. We show that K admits no power integral basis, determine the minimal index and all elements of minimal index. We use the solutions of a parametric family of quartic Thue equations and extensive numerical calculations by Maple and Magma are also involved.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Borka Jadrijević (autor)

Poveznice na cjeloviti tekst rada:

doi www.pphmj.com

Citiraj ovu publikaciju:

Gaál, István; Jadrijević, Borka
Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields // JP Journal of Algebra, Number Theory and Applications, 39 (2017), 3; 307-326 doi:10.17654/NT039030307 (međunarodna recenzija, članak, znanstveni)
Gaál, I. & Jadrijević, B. (2017) Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields. JP Journal of Algebra, Number Theory and Applications, 39 (3), 307-326 doi:10.17654/NT039030307.
@article{article, author = {Ga\'{a}l, Istv\'{a}n and Jadrijevi\'{c}, Borka}, year = {2017}, pages = {307-326}, DOI = {10.17654/NT039030307}, keywords = {bicyclic biquadratic fields, power integral basis, minimal index}, journal = {JP Journal of Algebra, Number Theory and Applications}, doi = {10.17654/NT039030307}, volume = {39}, number = {3}, issn = {0972-5555}, title = {Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields}, keyword = {bicyclic biquadratic fields, power integral basis, minimal index} }
@article{article, author = {Ga\'{a}l, Istv\'{a}n and Jadrijevi\'{c}, Borka}, year = {2017}, pages = {307-326}, DOI = {10.17654/NT039030307}, keywords = {bicyclic biquadratic fields, power integral basis, minimal index}, journal = {JP Journal of Algebra, Number Theory and Applications}, doi = {10.17654/NT039030307}, volume = {39}, number = {3}, issn = {0972-5555}, title = {Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields}, keyword = {bicyclic biquadratic fields, power integral basis, minimal index} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font