Pregled bibliografske jedinice broj: 870216
A note on the Birkhoff ergodic theorem
A note on the Birkhoff ergodic theorem // Results in mathematics, 72 (2017), 1/2; 715-730 doi:10.1007/s00025-017-0681-9 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 870216 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A note on the Birkhoff ergodic theorem
Autori
Sandrić, Nikola
Izvornik
Results in mathematics (1422-6383) 72
(2017), 1/2;
715-730
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Birkhoff ergodic theorem ; ergodicity ; Markov process ; Wasserstein metric
Sažetak
The classical Birkhoff ergodic theorem states that for an ergodic Markov process the limiting behaviour of the time average of a function (having finite $p$-th moment, $p\ge1$, with respect to the invariant measure) along the trajectories of the process, starting from the invariant measure, is a.s. and in the $p$-th mean constant and equals to the space average of the function with respect to the invariant measure. The crucial assumption here is that the process starts from the invariant measure, which is not always the case. In this paper, under the assumptions that the underlying process is a Markov process on Polish space, that it admits an invariant probability measure and that its marginal distributions converge to the invariant measure in the $L^{; ; ; ; 1}; ; ; ; $-Wasserstein metric, we show that the assertion of the Birkhoff ergodic theorem holds in the $p$- th mean, $p\geq1$, for any bounded Lipschitz function and any initial distribution of the process.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Nikola Sandrić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet