Pregled bibliografske jedinice broj: 866352
A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set
A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set // Journal of global optimization, 68 (2017), 4; 713-727 doi:10.1007/S10898-017-0510-4 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 866352 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set
Autori
Scitovski, Rudolf
Izvornik
Journal of global optimization (0925-5001) 68
(2017), 4;
713-727
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Symmetric function ; Lipschitz continuous function ; Global optimization ; DIRECT ; Sym DIRECT ; DISIMPL ; Center-based clustering
Sažetak
In this paper, we consider a global optimization problem for a symmetric Lipschitz continuous function $g : [a, b]^k \to \mathbb{; ; ; ; R}; ; ; ; $ whose domain $[a, b]^k \in \mathbb{; ; ; ; R}; ; ; ; ^k$ consists of k! hypertetrahedrons of the same size and shape, in which function g attains equal values. A global minimum can therefore be searched for in one hypertetrahedron only, but then this becomes a global optimization problem with linear constraints. Apart from that, some known global optimization algorithms in standard form cannot be applied to solving the problem. In this paper, it is shown how this global optimization problem with linear constraints can easily be transformed into a global optimization problem on hypercube $[0, 1]^k$, for the solving of which an applied DIRECT algorithm in standard form is possible. This approach has a somewhat lower efficiency than known global optimization methods for symmetric Lipschitz continuous functions (such as SymDIRECT or DISIMPL), but, on the other hand, this method allows for the use of publicly available and well developed computer codes for solving a global optimization problem on hypercube $[0, 1]^k$ (e.g. the DIRECT algorithm). The method is illustrated and tested on standard symmetric functions and very demanding center-based clustering problems for the data that have only one feature. An application to the image segmentation problem is also shown.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8350 - Metodološki okvir za učinkovito upravljanje energijom s pomoću inteligentne podatkovne analitike (MERIDA) (Zekić-Sušac, Marijana, HRZZ - 2016-06) ( CroRIS)
HRZZ-IP-2016-06-6545 - Optimizacijski i statistički modeli i metode prepoznavanja svojstava skupova podataka izmjerenih s pogreškama (OSMoMeSIP) (OSMoMeSIP) (Scitovski, Rudolf, HRZZ ) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Rudolf Scitovski
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- ABI/INFORM
- Compendex (EI Village)
- Zentrallblatt für Mathematik/Mathematical Abstracts
- ACM Digital Library
- DBLP
- EBSCO
- Gale
- Google Scholar
- JCReports/Science Edition
- Mathematical Reviews
- OCLC WorldCat Discovery Service
- ProQuest
- Referativnyi Zhurnal
- RePEc