Pregled bibliografske jedinice broj: 865107
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion // Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)
Cancún, Meksiko: Institute of Electrical and Electronics Engineers (IEEE), 2016. str. 2380-2385 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 865107 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion
Autori
Markuš, Nenad ; Pandžić, Igor ; Ahlberg, Jörgen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2016, 2380-2385
Skup
23rd International Conference on Pattern Recognition (ICPR)
Mjesto i datum
Cancún, Meksiko, 04.12.2016. - 08.12.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
local descriptors, image matching, image retrieval
Sažetak
Current best local descriptors are learned on a large dataset of matching and non-matching keypoint pairs. However, data of this kind is not always available since detailed keypoint correspondences can be hard to establish. On the other hand, we can often obtain labels for pairs of keypoint bags. For example, keypoint bags extracted from two images of the same object under different views form a matching pair, and keypoint bags extracted from images of different objects form a non-matching pair. On average, matching pairs should contain more corresponding keypoints than non-matching pairs. We describe an end-to-end differentiable architecture that enables the learning of local keypoint descriptors from such weakly-labeled data.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-8065 - Komunikacije usmjerene čovjeku u pametnim mrežama (HUTS) (Matijašević, Maja, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb