Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 865107

Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion


Markuš, Nenad; Pandžić, Igor; Ahlberg, Jörgen
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion // Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)
Cancún, Meksiko: Institute of Electrical and Electronics Engineers (IEEE), 2016. str. 2380-2385 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 865107 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion

Autori
Markuš, Nenad ; Pandžić, Igor ; Ahlberg, Jörgen

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 23rd International Conference on Pattern Recognition (ICPR) / - : Institute of Electrical and Electronics Engineers (IEEE), 2016, 2380-2385

Skup
23rd International Conference on Pattern Recognition (ICPR)

Mjesto i datum
Cancún, Meksiko, 04.12.2016. - 08.12.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
local descriptors, image matching, image retrieval

Sažetak
Current best local descriptors are learned on a large dataset of matching and non-matching keypoint pairs. However, data of this kind is not always available since detailed keypoint correspondences can be hard to establish. On the other hand, we can often obtain labels for pairs of keypoint bags. For example, keypoint bags extracted from two images of the same object under different views form a matching pair, and keypoint bags extracted from images of different objects form a non-matching pair. On average, matching pairs should contain more corresponding keypoints than non-matching pairs. We describe an end-to-end differentiable architecture that enables the learning of local keypoint descriptors from such weakly-labeled data.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-8065 - Komunikacije usmjerene čovjeku u pametnim mrežama (HUTS) (Matijašević, Maja, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Igor Sunday Pandžić (autor)

Avatar Url Nenad Markuš (autor)

Citiraj ovu publikaciju:

Markuš, Nenad; Pandžić, Igor; Ahlberg, Jörgen
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion // Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)
Cancún, Meksiko: Institute of Electrical and Electronics Engineers (IEEE), 2016. str. 2380-2385 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Markuš, N., Pandžić, I. & Ahlberg, J. (2016) Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion. U: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR).
@article{article, author = {Marku\v{s}, Nenad and Pand\v{z}i\'{c}, Igor and Ahlberg, J\"{o}rgen}, year = {2016}, pages = {2380-2385}, keywords = {local descriptors, image matching, image retrieval}, title = {Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion}, keyword = {local descriptors, image matching, image retrieval}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Canc\'{u}n, Meksiko} }
@article{article, author = {Marku\v{s}, Nenad and Pand\v{z}i\'{c}, Igor and Ahlberg, J\"{o}rgen}, year = {2016}, pages = {2380-2385}, keywords = {local descriptors, image matching, image retrieval}, title = {Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion}, keyword = {local descriptors, image matching, image retrieval}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Canc\'{u}n, Meksiko} }




Contrast
Increase Font
Decrease Font
Dyslexic Font