Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 864764

Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems


Tolić, Domagoj; Palunko, Ivana
Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems // IFAC-PapersOnLine, 50 (2017), 1; 4144-4149 doi:10.1016/j.ifacol.2017.08.802 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 864764 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems

Autori
Tolić, Domagoj ; Palunko, Ivana

Izvornik
IFAC-PapersOnLine (2405-8963) 50 (2017), 1; 4144-4149

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Multi-Agent Systems ; Decentralized Control ; Reinforcement Learning ; Optimal Control
(Multi-Agent Systems, Decentralized Control, Reinforcement Learning, Optimal Control)

Sažetak
In this paper, agents learn how often to exchange information with neighbors in cooperative Multi-Agent Systems (MASs) such that their user-defined cost functions are minimized. The investigated cost functions capture trade-offs between the MAS local control performance and energy consumption of each agent in the presence of exogenous disturbances. Agent energy consumption is critical for prolonging the MAS mission and is comprised of both control (e.g., acceleration, velocity) and communication efforts. The proposed methodology starts off by computing upper bounds on asynchronous broadcasting intervals that provably stabilize the MAS. Subsequently, we utilize these upper bounds as optimization constraints and employ an online learning algorithm based on Least Square Policy Iteration (LSPI) to minimize the cost function for each agent. Consequently, the obtained broadcasting intervals adapt to the most recent information (e.g., delayed and noisy agents' inputs and/or outputs) received from neighbors and provably stabilize the MAS. Chebyshev polynomials are utilized as the approximator in the LSPI while Kalman Filtering (KF) handles sampled, corrupted and delayed data. The proposed methodology is exemplified in a consensus control problem with general linear agent dynamics.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-2468 - Upravljanje dinamičkim sustavima (ConDyS) (Lazar, Martin, HRZZ ) ( CroRIS)

Ustanove:
Sveučilište u Dubrovniku

Profili:

Avatar Url Ivana Palunko (autor)

Avatar Url Domagoj Tolić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com www.sciencedirect.com

Citiraj ovu publikaciju:

Tolić, Domagoj; Palunko, Ivana
Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems // IFAC-PapersOnLine, 50 (2017), 1; 4144-4149 doi:10.1016/j.ifacol.2017.08.802 (međunarodna recenzija, članak, znanstveni)
Tolić, D. & Palunko, I. (2017) Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems. IFAC-PapersOnLine, 50 (1), 4144-4149 doi:10.1016/j.ifacol.2017.08.802.
@article{article, author = {Toli\'{c}, Domagoj and Palunko, Ivana}, year = {2017}, pages = {4144-4149}, DOI = {10.1016/j.ifacol.2017.08.802}, keywords = {Multi-Agent Systems, Decentralized Control, Reinforcement Learning, Optimal Control}, journal = {IFAC-PapersOnLine}, doi = {10.1016/j.ifacol.2017.08.802}, volume = {50}, number = {1}, issn = {2405-8963}, title = {Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems}, keyword = {Multi-Agent Systems, Decentralized Control, Reinforcement Learning, Optimal Control} }
@article{article, author = {Toli\'{c}, Domagoj and Palunko, Ivana}, year = {2017}, pages = {4144-4149}, DOI = {10.1016/j.ifacol.2017.08.802}, keywords = {Multi-Agent Systems, Decentralized Control, Reinforcement Learning, Optimal Control}, journal = {IFAC-PapersOnLine}, doi = {10.1016/j.ifacol.2017.08.802}, volume = {50}, number = {1}, issn = {2405-8963}, title = {Learning Suboptimal Broadcasting Intervals in Multi- Agent Systems}, keyword = {Multi-Agent Systems, Decentralized Control, Reinforcement Learning, Optimal Control} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font