Pregled bibliografske jedinice broj: 864486
On the global convergence of the Jacobi method for symmetric matrices of order 4 under parallel strategies
On the global convergence of the Jacobi method for symmetric matrices of order 4 under parallel strategies // Linear algebra and its applications, 524 (2017), 199-234 doi:10.1016/j.laa.2017.03.003 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 864486 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the global convergence of the Jacobi method for symmetric matrices of order 4 under parallel strategies
Autori
Begović Kovač, Erna ; Hari, Vjeran
Izvornik
Linear algebra and its applications (0024-3795) 524
(2017);
199-234
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Eigenvalues ; symmetric matrix of order 4 ; Jacobi method ; global convergence ; parallel pivot strategies
Sažetak
The paper analyzes special cyclic Jacobi methods for symmetric matrices of order $4$. Only those cyclic pivot strategies that enable full parallelization of the method are considered. These strategies, unlike the serial pivot strategies, can force the method to be very slow or very fast within one cycle, depending on the underlying matrix. Hence, for the global convergence proof one has to consider two or three adjacent cycles. It is proved that for any symmetric matrix $A$ of order $4$ the inequality $S(A^{; ; ; [2]}; ; ; )\leq (1-10^{; ; ; -5}; ; ; )S(A)$ holds, where $A^{; ; ; [2]}; ; ; $ results from $A$ by applying two cycles of a particular parallel method. Here $S(A)$ stands for the Frobenius norm of the strictly upper-triangular part of $A$. The result holds for two special parallel strategies and implies the global convergence of the method under all possible fully parallel strategies. It is also proved that for every $\epsilon>0$ and $n\geq4$ there exist a symmetric matrix $A(\epsilon)$ of order $n$ and a cyclic strategy, such that upon completion of the first cycle of the appropriate Jacobi method $S(A^{; ; ; [1]}; ; ; )>(1-\epsilon)S(A(\epsilon))$ holds.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3670 - Matične faktorizacije i blok dijagonalizacijski algoritmi (MFBDA) (Hari, Vjeran, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus