Pregled bibliografske jedinice broj: 864256
Convergence of the cyclic and quasi-cyclic block Jacobi methods
Convergence of the cyclic and quasi-cyclic block Jacobi methods // Electronic transactions on numerical analysis, 46 (2017), 107-147 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 864256 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convergence of the cyclic and quasi-cyclic block Jacobi methods
Autori
Hari, Vjeran ; Begović Kovač, Erna
Izvornik
Electronic transactions on numerical analysis (1068-9613) 46
(2017);
107-147
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Eigenvalues ; block Jacobi method ; pivot strategies ; global convergence
Sažetak
The paper studies the global convergence of the block Jacobi method for symmetric matrices. Given a symmetric matrix $A$ of order $n$, the method generates a sequence of matrices by the rule $A(k+1)=UkTA(k)Uk$, $k\geq0$, where $U_k$ are orthogonal elementary block matrices. A class of generalized serial pivot strategies is introduced, significantly enlarging the known class of weak wavefront strategies, and appropriate global convergence proofs are obtained. The results are phrased in the stronger form: $S(A')\leq c S(A)$, where $A'$ is the matrix obtained from $A$ after one full cycle, $c<1$ is a constant and $S(A)$ is the off-norm of $A$. Hence, using the theory of block Jacobi operators, one can apply the obtained results to prove convergence of block Jacobi methods for other eigenvalue problems, such as the generalized eigenvalue problem. As an example, the results are applied to the block $J$-Jacobi method. Finally, all results are extended to the corresponding quasi-cyclic strategies.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3670 - Matične faktorizacije i blok dijagonalizacijski algoritmi (MFBDA) (Hari, Vjeran, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Mathematical Reviews