Pregled bibliografske jedinice broj: 857778
Convolutional Scale Invariance for Semantic Segmentation
Convolutional Scale Invariance for Semantic Segmentation // Pattern Recognition. 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings. Lecture Notes in Computer Science, Vol. 9796. / Rosenhahn, Bodo, Andres, Bjoern (ur.).
Hannover: Springer, 2016. str. 64-75 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 857778 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convolutional Scale Invariance for Semantic Segmentation
Autori
Krešo, Ivan ; Čaušević, Denis ; Krapac, Josip ; Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Pattern Recognition. 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings. Lecture Notes in Computer Science, Vol. 9796.
/ Rosenhahn, Bodo, Andres, Bjoern - Hannover : Springer, 2016, 64-75
ISBN
978-3-319-45885-4
Skup
38th German Conference on Pattern Recognition GCPR 2016.
Mjesto i datum
Hannover, Njemačka, 12.09.2016. - 15.09.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Convolutional networks, semantic segmentation
Sažetak
We propose an effective technique to address large scale variation in images taken from a moving car by cross-breeding deep learning with stereo reconstruction. Our main contribution is a novel scale selection layer which extracts convolutional features at the scale which matches the corresponding reconstructed depth. The recovered scale-invariant representation disentangles appearance from scale and frees the pixel-level classifier from the need to learn the laws of the perspective. This results in improved segmentation results due to more efficient exploitation of representation capacity and training data. We perform experiments on two challenging stereoscopic datasets (KITTI and Cityscapes) and report competitive class-level IoU performance.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus