Pregled bibliografske jedinice broj: 857007
Numerical Solution of Poisson’s Equation in an Arbitrary Domain by Using Meshless R-Function Method
Numerical Solution of Poisson’s Equation in an Arbitrary Domain by Using Meshless R-Function Method // Proceedings of the 27th DAAAM International Symposium on Intelligent Manufacturing and Automation / Katalinic, B. (ur.).
Beč: DAAAM International Vienna, 2016. str. 245-254 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 857007 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Numerical Solution of Poisson’s Equation in an Arbitrary Domain by Using Meshless R-Function Method
Autori
Kozulić, Vedrana ; Gotovac, Blaž
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 27th DAAAM International Symposium on Intelligent Manufacturing and Automation
/ Katalinic, B. - Beč : DAAAM International Vienna, 2016, 245-254
ISBN
978-3-902734-08-2
Skup
27th DAAAM International Symposium on Intelligent Manufacturing and Automation
Mjesto i datum
Mostar, Bosna i Hercegovina, 26.10.2016. - 29.10.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
meshless method ; solution structure ; collocation ; boundary conditions ; atomic basis functions
Sažetak
This paper describes a numerical procedure that uses solution structure method, atomic basis functions and a collocation technique. Solution structure method is based on the theory of R- functions. The solution of a boundary value problem is expressed in the form of formulae called solution structure which depends on three components: the first component describes the geometry of the domain exactly in analytical form, the second describes all boundary conditions exactly, while the third component is called differential component because it contains information about governing equation. Unknown differential component of the solution structure is represented by a linear combination of basis functions. Here, we propose to use atomic basis functions because of their good approximation properties. To determine the coefficients of linear combination in the solution structure, a collocation technique is used. Combination of atomic basis functions and solution structure method gives the meshfree method that can be applied for solving boundary value problems in domains of arbitrarily complex geometry with complex boundary conditions. This paper summarizes the main principles of the proposed method and presents its application to solution of the torsion problem.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus