Pregled bibliografske jedinice broj: 856944
Korisnički profil za pružanje informacijskih i komunikacijskih usluga zasnovanih na utjecajnosti korisnika
Korisnički profil za pružanje informacijskih i komunikacijskih usluga zasnovanih na utjecajnosti korisnika, 2016., doktorska disertacija, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 856944 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Korisnički profil za pružanje informacijskih i komunikacijskih usluga zasnovanih na utjecajnosti korisnika
(User profile for provisioning information and communication services based on user influence)
Autori
Smailović, Vanja
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
13.06
Godina
2016
Stranica
153
Mentor
Podobnik, Vedran
Ključne riječi
usluga društvenog umrežavanja ; korisnički profil ; korisničko profiliranje ; društvene mreže ; analiza društvenih mreža ; izračun društvene utjecajnosti
(social networking service ; user profile ; user profiling ; social networks ; social network analysis ; social influence calculation)
Sažetak
User profile enables collection, storage and interpretation of user data, which in turn enables analysis and reasoning upon such data. It is an ongoing research challenge to utilize vast amounts of available multi-source, heterogeneous user data with the goal of identifying key, socially influential actors for provisioning information and communication services. Novel approach to solving this challenge includes several steps, as proposed in this thesis. First, a novel user profiling method is proposed in order to efficiently acquire, aggregate and consolidate user data from two data-sources – the telecom-operator's network and Interned-based social networks. Second, a novel user profile model is developed for inference upon such user data. Third, improved algorithms for reasoning upon profile data are proposed, resulting in new knowledge about each user – their social influence. The proposed algorithm improvements in calculating social influence are statistically validated and evaluated through a real-world experiment. Substantial difference in results between the two data-sources is statistically proven, explaining their synergy once utilized together. Finally, out of several algorithm proposals stemming from the Limited Recursive Algorithm (LRA), the variant with Sample- Literature-Optimal Posting Frequency factor (SLOF) demonstrates significant improvement. For example, churn-prevention, prioritizing customer care, digital advertising and disease- tracking algorithms could all benefit from the SLOF algorithm as exemplified in the thesis.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Vedran Podobnik
(mentor)