Pregled bibliografske jedinice broj: 856607
The growth of the rank of Abelian varieties upon extensions
The growth of the rank of Abelian varieties upon extensions // Ramanujan journal, 39 (2016), 2; 259-269 doi:10.1007/s11139-014-9627-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 856607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The growth of the rank of Abelian varieties upon extensions
Autori
Bruin, Peter ; Najman, Filip
Izvornik
Ramanujan journal (1382-4090) 39
(2016), 2;
259-269
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Elliptic curves ; Rank growth
Sažetak
We study the growth of the rank of elliptic curves and, more generally, Abelian varieties upon extensions of number fields. First, we show that if A is an Abelian variety over a number field K and L/K is a finite Galois extension such that Gal(L/K) does not have an index 2 subgroup, then rkA(L)−rkA(K) can never be 1. We show that rkA(L)−rkA(K) is either 0 or ≥p−1, where p is the smallest prime divisor of #Gal(L/K), and we obtain more precise results when Gal(L/K) is alternating, SL2(Fp) or PSL2(Fp) for p>2. This implies a restriction on rkE(K(E[p]))−rkE(K(ζp)) when E/K is an elliptic curve whose mod p Galois representation is surjective. We obtain similar results for the growth of the rank over certain non-Galois extensions. Second, we show that for every n≥2 there exists an elliptic curve En over a number field Kn such that Q⊗EndQResKn/QEn contains a number field of degree 2n. We ask whether every elliptic curve E/K has infinite rank over KQ(2), where Q(2) is the compositum of all quadratic extensions of Q. We show that if the answer is yes, then for any n≥2, there exists an elliptic curve En over a number field Kn admitting infinitely many quadratic twists whose rank is a positive multiple of 2n.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Filip Najman
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus