Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 856607

The growth of the rank of Abelian varieties upon extensions


Bruin, Peter; Najman, Filip
The growth of the rank of Abelian varieties upon extensions // Ramanujan journal, 39 (2016), 2; 259-269 doi:10.1007/s11139-014-9627-y (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 856607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The growth of the rank of Abelian varieties upon extensions

Autori
Bruin, Peter ; Najman, Filip

Izvornik
Ramanujan journal (1382-4090) 39 (2016), 2; 259-269

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Elliptic curves ; Rank growth

Sažetak
We study the growth of the rank of elliptic curves and, more generally, Abelian varieties upon extensions of number fields. First, we show that if A is an Abelian variety over a number field K and L/K is a finite Galois extension such that Gal(L/K) does not have an index 2 subgroup, then rkA(L)−rkA(K) can never be 1. We show that rkA(L)−rkA(K) is either 0 or ≥p−1, where p is the smallest prime divisor of #Gal(L/K), and we obtain more precise results when Gal(L/K) is alternating, SL2(Fp) or PSL2(Fp) for p>2. This implies a restriction on rkE(K(E[p]))−rkE(K(ζp)) when E/K is an elliptic curve whose mod p Galois representation is surjective. We obtain similar results for the growth of the rank over certain non-Galois extensions. Second, we show that for every n≥2 there exists an elliptic curve En over a number field Kn such that Q⊗EndQResKn/QEn contains a number field of degree 2n. We ask whether every elliptic curve E/K has infinite rank over KQ(2), where Q(2) is the compositum of all quadratic extensions of Q. We show that if the answer is yes, then for any n≥2, there exists an elliptic curve En over a number field Kn admitting infinitely many quadratic twists whose rank is a positive multiple of 2n.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Filip Najman (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com doi.org

Citiraj ovu publikaciju:

Bruin, Peter; Najman, Filip
The growth of the rank of Abelian varieties upon extensions // Ramanujan journal, 39 (2016), 2; 259-269 doi:10.1007/s11139-014-9627-y (međunarodna recenzija, članak, znanstveni)
Bruin, P. & Najman, F. (2016) The growth of the rank of Abelian varieties upon extensions. Ramanujan journal, 39 (2), 259-269 doi:10.1007/s11139-014-9627-y.
@article{article, author = {Bruin, Peter and Najman, Filip}, year = {2016}, pages = {259-269}, DOI = {10.1007/s11139-014-9627-y}, keywords = {Elliptic curves, Rank growth}, journal = {Ramanujan journal}, doi = {10.1007/s11139-014-9627-y}, volume = {39}, number = {2}, issn = {1382-4090}, title = {The growth of the rank of Abelian varieties upon extensions}, keyword = {Elliptic curves, Rank growth} }
@article{article, author = {Bruin, Peter and Najman, Filip}, year = {2016}, pages = {259-269}, DOI = {10.1007/s11139-014-9627-y}, keywords = {Elliptic curves, Rank growth}, journal = {Ramanujan journal}, doi = {10.1007/s11139-014-9627-y}, volume = {39}, number = {2}, issn = {1382-4090}, title = {The growth of the rank of Abelian varieties upon extensions}, keyword = {Elliptic curves, Rank growth} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font