Pregled bibliografske jedinice broj: 853596
Retrieving sinusoids from nonuniformly sampled data using recursive formulations
Retrieving sinusoids from nonuniformly sampled data using recursive formulations // Expert systems with applications, 72 (2017), 245-257 doi:10.1016/j.eswa.2016.10.057 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 853596 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Retrieving sinusoids from nonuniformly sampled data using recursive formulations
Autori
Marić, Ivan
Izvornik
Expert systems with applications (0957-4174) 72
(2017);
245-257
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Signal decomposition ; Signal recovery ; Sparse set of sinusoids ; Time series modeling ; Predictive least squares
Sažetak
A heuristic procedure based on novel recursive formulation of sinusoid (RFS) and on regression with pre- dictive least-squares (LS) enables to decompose both uniformly and nonuniformly sampled 1-d signals into a sparse set of sinusoids (SSS). An optimal SSS is found by Levenberg–Marquardt (LM) optimization of RFS parameters of near-optimal sinusoids combined with common criteria for the estimation of the number of sinusoids embedded in noise. The procedure estimates both the cardinality and the param- eters of SSS. The proposed algorithm enables to identify the RFS parameters of a sinusoid from a data sequence containing only a fraction of its cycle. In extreme cases when the frequency of a sinusoid ap- proaches zero the algorithm is able to detect a linear trend in data. Also, an irregular sampling pattern enables the algorithm to correctly reconstruct the under-sampled sinusoid. Parsimonious nature of the obtaining models opens the possibilities of using the proposed method in machine learning and in ex- pert and intelligent systems needing analysis and simple representation of 1-d signals. The properties of the proposed algorithm are evaluated on examples of irregularly sampled artificial signals in noise and are compared with high accuracy frequency estimation algorithms based on linear prediction (LP) approach, particularly with respect to Cramer–Rao Bound (CRB).
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
098-0982560-2565 - Postupci računalne inteligencije u mjernim sustavima (Marić, Ivan, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Ivan Marić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Computer and Information Systems Abstracts
- Research Alert, SCISEARCH, Scopus