Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 853596

Retrieving sinusoids from nonuniformly sampled data using recursive formulations


Marić, Ivan
Retrieving sinusoids from nonuniformly sampled data using recursive formulations // Expert systems with applications, 72 (2017), 245-257 doi:10.1016/j.eswa.2016.10.057 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 853596 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Retrieving sinusoids from nonuniformly sampled data using recursive formulations

Autori
Marić, Ivan

Izvornik
Expert systems with applications (0957-4174) 72 (2017); 245-257

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Signal decomposition ; Signal recovery ; Sparse set of sinusoids ; Time series modeling ; Predictive least squares

Sažetak
A heuristic procedure based on novel recursive formulation of sinusoid (RFS) and on regression with pre- dictive least-squares (LS) enables to decompose both uniformly and nonuniformly sampled 1-d signals into a sparse set of sinusoids (SSS). An optimal SSS is found by Levenberg–Marquardt (LM) optimization of RFS parameters of near-optimal sinusoids combined with common criteria for the estimation of the number of sinusoids embedded in noise. The procedure estimates both the cardinality and the param- eters of SSS. The proposed algorithm enables to identify the RFS parameters of a sinusoid from a data sequence containing only a fraction of its cycle. In extreme cases when the frequency of a sinusoid ap- proaches zero the algorithm is able to detect a linear trend in data. Also, an irregular sampling pattern enables the algorithm to correctly reconstruct the under-sampled sinusoid. Parsimonious nature of the obtaining models opens the possibilities of using the proposed method in machine learning and in ex- pert and intelligent systems needing analysis and simple representation of 1-d signals. The properties of the proposed algorithm are evaluated on examples of irregularly sampled artificial signals in noise and are compared with high accuracy frequency estimation algorithms based on linear prediction (LP) approach, particularly with respect to Cramer–Rao Bound (CRB).

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
098-0982560-2565 - Postupci računalne inteligencije u mjernim sustavima (Marić, Ivan, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivan Marić (autor)

Citiraj ovu publikaciju:

Marić, Ivan
Retrieving sinusoids from nonuniformly sampled data using recursive formulations // Expert systems with applications, 72 (2017), 245-257 doi:10.1016/j.eswa.2016.10.057 (međunarodna recenzija, članak, znanstveni)
Marić, I. (2017) Retrieving sinusoids from nonuniformly sampled data using recursive formulations. Expert systems with applications, 72, 245-257 doi:10.1016/j.eswa.2016.10.057.
@article{article, author = {Mari\'{c}, Ivan}, year = {2017}, pages = {245-257}, DOI = {10.1016/j.eswa.2016.10.057}, keywords = {Signal decomposition, Signal recovery, Sparse set of sinusoids, Time series modeling, Predictive least squares}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2016.10.057}, volume = {72}, issn = {0957-4174}, title = {Retrieving sinusoids from nonuniformly sampled data using recursive formulations}, keyword = {Signal decomposition, Signal recovery, Sparse set of sinusoids, Time series modeling, Predictive least squares} }
@article{article, author = {Mari\'{c}, Ivan}, year = {2017}, pages = {245-257}, DOI = {10.1016/j.eswa.2016.10.057}, keywords = {Signal decomposition, Signal recovery, Sparse set of sinusoids, Time series modeling, Predictive least squares}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2016.10.057}, volume = {72}, issn = {0957-4174}, title = {Retrieving sinusoids from nonuniformly sampled data using recursive formulations}, keyword = {Signal decomposition, Signal recovery, Sparse set of sinusoids, Time series modeling, Predictive least squares} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Computer and Information Systems Abstracts
  • Research Alert, SCISEARCH, Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font