Pregled bibliografske jedinice broj: 851673
Fractal Geometry of Oscillatory Integrals and Singularities of Differentiable Maps
Fractal Geometry of Oscillatory Integrals and Singularities of Differentiable Maps // Fractals 2016: Summer School on Fractal Geometry and Complex Dimensions - In celebration of the 60th birthday of Michel Lapidus
San Luis Obispo (CA), Sjedinjene Američke Države, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 851673 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal Geometry of Oscillatory Integrals and Singularities of Differentiable Maps
Autori
Rolin, Jean-Philippe ; Vlah, Domagoj ; Županović, Vesna
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Fractals 2016: Summer School on Fractal Geometry and Complex Dimensions - In celebration of the 60th birthday of Michel Lapidus
Mjesto i datum
San Luis Obispo (CA), Sjedinjene Američke Države, 21.06.2016. - 29.06.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
oscillatory integral; box dimension; Minkowski content; critical points; Newton diagram
Sažetak
It is well known that theory of singularities is closely related to the study of asymptotic of oscillatory integrals. We investigate the fractal properties of a geometrical representation of oscillatory integrals \[ I(\tau)=\int_{; ; \mathbb{; ; R}; ; ^n}; ; e^{; ; i\tau f(x)}; ; \phi(x) dx, \] for large values of a real parameter $\tau$, where $f$ is the analytic phase and $\phi$ is the smooth amplitude with compact support. We are motivated by a geometrical representation of Fresnel oscillatory integrals by a spiral called the clothoid, and the idea to produce a classification of singularities using the fractal dimension. We measure the oscillatority by the Minkowski dimension of the planar curve parametrized by the real part $X$ and imaginary part $Y$ of the integral $I$. Also, we measure the oscillatory dimension that is defined as the Minkowski dimension of the graph of the function $x(t) = X(1/t)$, near $t=0$, and analogously for $Y$. We provide explicit formulas connecting these Minkowski dimensions and associated Minkowski contents with asymptotics of the integral $I$ and the type of the critical point of the phase $f$. Used techniques include Newton diagrams and the resolution of singularities. Finally, it is possible to consider oscillatory integrals whose amplitude $\phi$ is a discontinuous function, which is related to more involved fractal geometry.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb